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PREFACE. A

——————

/AN

Tar aim of this work i3 to give a brief expgs\itibn of some
of the devieces employed in solving différéntial equations.
The bhook presupposes ouly a knowledge soipthe fuudamental
tormula: of integration, and W%bﬁ;ﬁﬁﬁmeﬁloﬁé i chapter
supplomentary to the elementard\\works on the integral
caleulus. o\ o

The needs of two classes of l%‘cﬁdeuts, with whom the anthor
has been lrought intoe conﬁiﬁ}{: “in the course of his experience
as @ teacher, have detedihined the character of the work. Ifor
the sake of Student&j‘g\f physics and engincering who wish to
use the subjeét“'}s\a; tool, and have little time to devote to
general theo;.y%ft@g theoretical explanations have been made as
brief as ig tg(\)li’:fsistént with clearness and sound reagoning, and
e-xa-mplc{.*s‘:};.vé‘vbeen worked in full detail in almost every easc.
Pr_-a\eﬁ{cﬁ‘f applieations have alse been constantly kept in mind,
z;n_& two speeial’ehaptm’s dealing with geometrical and physi-

Ny .
s\l problems liave been introduced.

9

The other class for which the beok is intended is that of
students in the general courses in Arts and Science, who have
maore time to gratify any interest they may feel in this subject,
and some of whom may be intending to proceed to the study
of the higher mathematics. For these students, notes have

¥



vi PREEFACE.

been inserted in the latter part of the book. Some of the
notes contain the demonstrations of theorems which are
referred to, or partially proved, in the first part of the work,
If these discussions were given in full in the latter place, they ,
would probably tend to disecourage a beginner. Accovdingly,
it has been thought hetier to delay the rigorous p:-f);‘{f\u}‘.
several theorems wntii the student has acquired some tegree
of familiarity with the working of examples. O
Throughout the hook are many historical apﬂj\}}l;)gl‘aphiua.l
notes, which it is hoped will prove interestidig “In order that -
beginners may have a larger and better th'éption of the sub
jeet, it seem?ﬂtm th)rar {pomt out te ﬂ\em some of the most
important lines of development off the study of differential .
equations, and notes have beenf.gwen which have this object
in view. Yor this pnrposg;:;l.l%o,'a, few articles have been .
placed in the body of the text. These articles refer to
Riccati’s, Bessel's, Legendre’s, Laplace’s, and Poisson’s enua- -
tions, and the eqs @i@ﬁ of the hypergeometric series, which . '
are forms tha,‘r properly lie beyoud the scope of an introductory

work. ¢

In mamy eages in which points are discussed in the brief
man@.hécessary in a work of this kind, references are

giygn\ where fuller explanations and further developments

~gay be foond. These references arc made, whenever possi- -

i

Dle, to sources easily accessible to an ordinary student, and
especially to the standard treatises, in English, of Boole, .
Forsyth, and Johnsan, .
For students who can afford hut a minimum of time for |
this study, the essential articles of a short course are indicated
after the table of contents. .
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PREFACE. vii

Of the examples not a few are original, and many are taken
from examination papers of leading universities. There is
also a large number of examyples, which, either by reason of
their frequent use in mechanical problems or their excellence
as examples per se, are common to all elementary text-books on
differential eguaticns. ¢ \‘\

There remains the pleasant duty of making FD}]{B‘BSIOD of
my indebtedness. ' :"".

In preparing this book, T have consulted m’z{} works and
mermoirs; and, in particular, have derived especial help for
the principal part of the work from tht{\t,reatises of Boole,
Forgyth, and Johnson, and \f{r“?{:’u ht; 1}%})’&%1;5 I%n Differen-
tial Equations in the works of De ‘\ organ, Moigno, Hoiiel,
Laurent, lioussinesq, and Man&'ron" T have in addition te
acknowledge suggestions 1eoewed from Byerly’s “ Key to the
Solution of Differential Eqnahom published in hig Infegral
Clalculus, Osborne’s Muwgmples and Idwles, and from the trea-
tiges of \Vﬂha,ms{m; F\Wards and Btegemann on the Caleulus,
Use has also bee\made of notes of a course of lectures deliv-
ered by Professor David Hilbert at Gotingen. Suggestions
and ma‘geria} for many of the historical and other notes have
alse he&n received from the works of Craig, Jordan, Picard,
Gou%a% Koenigsherger, and SBchlesinger on Differential Equa-

‘tlons from Byerly’s Fonrier's Sevies and Spherical Harmonies,
..(Jal]orlq History of Mathematics, and from the chapters on

Hyperbolic Functions, Harmonie Functions, and the History
of Modern Mathematics in Merriman and Woodward's Higher
Muthemegics.  The mechanical and physical examples have
beer: obtained from Tait and Steele’s Dynamics of a Purticle,
Yiwet's Mechanics, Thomson and Tai¥’s Natural Fhilosophy,

. -



viii PREFACE.

Dmmtage’s Mathematical Theory of Electricity and  Magnetisin,
Bedell and Crehore's Alternating Currents, and Bedell's FPrin-
eiples of the Transformer. These and many other acknewledg-
ments will be found in various parts of the book.

To the friends who have encouraged and aided me in 11113
undertaking, 1 take this opportunity of expressing my ,g:“m

- tude. And firgt and especially to Professor meq MeMahon

of Cornell University, whose opinions, advice, and, ('u{u 151018,
kindly and freely given, have heen of the glgaa{jnst, service to
me. I have alse to thank Professors . Mem:itt and T Bedell -_
of the department of physies, and I’rd?éssm Tanner, Mr
Saurel, and ?1%1 aA[Hb}}mOf the depa1tm\1t of mathematics at.
Cornell for “valable aed And. suggeq’bmns Professor Meduahon
and Mr. Allen have alse agsisted me in revising the proof-shests
while the work was going threuvh the press. To Miss H. 8
Poole and Mr. M. Maeneill; graduate students at Cornell, I am
indebt_ed for the veriﬁtf@tion of many of the examples.

CorNELL UNIVE HSIT},\\ D A 91 URRAY.

Aprit, 1897.0)
. . .‘.'\ 4 T
J:}B;EFACE TO THE SECOND EDITION.

ONY L. . .
I mawe this opportunity of expressing my thanks to my -
fe}h;} teachers of mathematics for the kind reception which

..they have given to this book. My gratitude is cspecially

e

“due to those who have pomted oub errors, made criticisms, .

or offerad suggestions for improving the work. Several of
these suggestions have been adopted in preparing this edition.
It is hoped that the answers to the examples are now fleel

from mistakes. D. A. MURRAY.
! L
Corrprr University,
June, 1868,



CONTENTS. Q

e\
:,.\\ o
« \/
EQUATIONS INVOLVING TWO VARIABLES™\
"i:..
CHAPTER L \:j}

Dermximioxs, FoumaATmion or A DIFI'}‘RE\{)&L Eqcation,

ABT TPaae
1. Ordinary and partial differentia¥ W}&’u{ibﬁ%‘{hmﬂgy a'ﬂdg &Q"ree 1
2. Bolutions and constants of inlegration\ 2
8. The derivation of a dilferential L,quatmn . . . . . 4
4. Bolutions, general, particular, qmgma.r 6
5. (Geometrical meaning of a <lrﬂerenl1ai cemation nf the ilre.t

order and degree ™ B 8
6. (Geometrical meaning of\a ajﬂ”erentml oquatmu of ) degree or
an order higher thag\t.he fira . . . . . . ]
¥xampleg on L‘T{a\{ﬁﬁ;‘, . . . . . . .11
NS CHAPTER IL
AN/
.EaQ'LA’J:{E\S or TnE Firsr OrvE® axp oF rHE First DEGREE.
8. ﬁfﬁ;om of the form fi(xdie -+ (ydy =0 . . A 7'
@, tations homogenenus in x and » . . . . 1A
llk ,;\011 homogenenus equations of the first deﬂrac in g 'md Y .18
¢ N % Exact difforentjal eglations . . N
"\ M2, Condition that an eguation of thoe ﬁlbt ordm be oxant . . 18
713, Rule for finding the sohition of an exact Aifferential squation . 19
14, Integrating factors . . - . . . .2
ih. The number of integrating f’wt.nh is mﬁmte . . . .21
16, Integrating factors fovnd by inspection . . . . .22
17. Rules for finding integraling factors, Rules I and I . . 23
18. Raules III. and IV. . . . . .. -

ix




X CONTENTS.

AERT. Tane
1¢. Rule V. . . . . . . . . . . .25
20. Linear equations . . . . . .26
21. Equations reducible to the lmear form . . . . . 28
Examples on Chapter IL . . . . . . . .29

CHAPTER 1II. A
~e \

EqQUATIONS OF THE FIR‘!T {EDER BUT NOT OF THE Fiusr 1)r(f|{1§E

22. Equations that can be resolved into component equanonb.of 1113

first degree . . 11
25. Fquations that cannot be resolved inte component etmﬁmns .82
24. Equations solvable fory . - . . N\\% . .33
25. Equations solvable for . . O . .34
26. Hquations that do not contain % ; 1114t do not.bomsun y . . B34
27. Equations homogeneous in s and y . (N .
28, Bquatidh¥' &t ‘ihfﬁl‘dﬂ lil'eafeé & g it dly a ¥ Cla.lra.ut’a equatlon . 88
29, Summary . WA . . . - -
Examples on Chapter iII R . .. ... B8

AN
e

CHBAPTER IV.

S\ﬁGULAR SoLTTIONS,

30. References to alie{%a, and geometry . . . . . .40
31. The diseriminant . . . .. . 40
32. The envelopel ». . . . L. . .4
33, The smgul&f solution . . . . . . . . 42
34, Cla.lra.u‘{s. SEguation . . 44
a5. Relations, not soluiions, that may appear in the P and I dls—
. \grininant relations . . . . . . . .M
36.\ Tquation of the taclocus . . . . . . . . 4B
370 *Equation of the modallocns . . . . . . . 45
o\ »38 Fquation of the caspidal locas . . . . . . .47
\ ) 8. Summary . . . . . . . . 48
Examples on (,ha.pt.er IV . . . . . A
CHAPTER V.
ArrricaTions 10 GEOMETRY, MucHANIcS, awD PHYSICS,
41. Geometrigal problems . . . . . . . . Bl

|

| 42, Geometricaldata . . . . .. . . &1
|

|



ART.
43.
44,
46,
48,
47.
48,

o b

i

g o
iy

G,

2

-
o

58,
1328

Bl

’o

~Cav

\

3

[
[

a3,

34,

CONTENTS. xi
Pasr
Exzamples 53
Troblems relating to L'i‘a.]()bti)l ics 53
Trajectorics, rectangular co-ordinates 55
Orthogonal trajectories, polar co-ordinates
Examples . . . . . . . 57
Mechanical and phy slua,l problemb . . . . . ' p \}I&
Examnples an Chapter V. . . . . . . o\
Nows
N
CHAPTER VI X9, \
N
LaNeAsr EqgratTions witfl (JONSTANT Cm;rr'fc{ﬁ'ﬂs.
Linear equations defined. The complemeqiﬁ}"'y function, the
particular integral, the eomplete integlal = 63
The linear eguation with constan%‘féﬁ }wkﬁfﬂé%xd %&em- :
ber zero . . Pt 64
Cagze of the auxiliary equdtwn llzwlrrg equal roots 65
(ase of the auxiliary cquarmn ‘h‘zwmg imaginary roots [34]
. The symbol 12 . S N1 67
. Thoorem eoncerning I . G8
Another way of ﬁndl i\ihe solution wh(\u the aux:lla.ry equa-
tion has rope a,md mots . . @9
‘T'he linear eth@s with constant Cf:-eﬁ'ml?n’f“ and scoond men-
ber o fangtion of ¢ 70
- e\ A 1
. T'he STmellG function 7o 70
\Iethn;lds\ ot finding the particular integral . 72
th)rmtllothods of finding the pa,m(,ula.r integrals n ce1t.a.m
e 73
lntcwnl ('onmpondmﬁ' to & term of form €% in t.he sec‘.nnd
merber T4
Intogral corrvesponding to a term of form ™ in the Sec()ud T
metnber 78
3, Integral correspending to a term of f:nm 8in g2 or ¢os wie in the
second member . . . . 6
Integral corresponding to a term of form e V in t-he second
otember . 78
Integral cor wapnndum to & term 01 [orm :cV in the haeond
memher . . . 79
Ezamples on Chapter VI . . . . . . . . B

58 2



xil

CONTENTE.

CHAPTER V1L

Livgan Eorarioxs with VARIAGLE CORFFICIENTS,

ART. Tadn S
65. The bomogeneous linear equation.  First method of solution . 82,
66. Second method of solution: (A) To tind the complumnlu A
Innetion . \ 4
67. Becond method of solu.mon (b‘) To ﬁncl .,111 m.ltac,uhu 1:1t4,£{:'|.i §i
63. The symbolic functions F{#) and J?(Lﬁ'i‘ . . B
4. dethods of finding the particalar integral . - o8 ”‘\\ a7
T Integral cot'le-,pundmsr to a term of forin xaNJ the s nud
nirerniber . . . . B
71. Eguations reducible to the homnuenemh 1( Q,l fmm . . |
i

Examples on Chapter VII, . p
\g gbral}‘]brary org.in £\ \/

B ¥ "0
CHAPTERYVIIL

O
Exascr DIrreresTiAL EQUA;TY@}'P:: &% EouaTiong oF PARTICULAR

=3 = =y =T
@roHe I9

m .‘ B

=1
b

8.
£, §
3{1
\
4 81

=1 =1

84,
SJ

Fouus., JIxrinoariod 15 Serles

\
Exact differential eqﬁ&tmns defined | . . . . L
Criterion of an éxdet difforensial equation . . . Lo
The mterrratlon oi an Exaci eguation ; first 1nlwmis . .
Lquatlous uf the form =F{y . . . . . . '_
2 |
]":qua@ghb of the form f— =f¥) . . ... U
ations that do not contfnn g directly ., . . . R
N].llatmns that do not contain « direcly . . o -
’Equatmnh in which ¥ appears in only two (Ieuvd.[.l\cs V\.hobe '_
orders differ by two . 9
HEgnations in whicl, g a,pp&"u:: i 011[3 1350 dl‘uvatwm whme
orders differ by unity . . . . . . L1
Integration of linear equations in serics . 11 Ny

Equations of Legendre, Bessel, Ricciti, and the h],pel‘:eomenw
geries v . . . . .
Examples on (,hapter VIII . . . . . . .




o

CONTENTS,

ART.

BS.
84.
87,
85,
a0,
9.

21.
02,

o5,
96,

CHAPTER IX. . .7
EquaTioNs or toe Srcosn ORDER.

The complete solution in terms of a known integral .
Relation between the integrals

To find the solution by Inspection

The solution found by means of operatmml f‘lctom .

) o5
12
.’\

The golution found by meavs of two fist integrals . -« \J

Transformation of the equation by ehanging ihe tiepmnlf ik
variable . . . . .
Removal of the first derwatlw . . . . n\

Transformation of the equation by changivg the' mdependent

variable

Synopsis of methods of qolwnﬁ; equfthons (\ﬁ t&é ewnd Urder .

Examples on Cliapter TX. A W thﬂllbl ary .org.in

A\ W

CHAPTER, \

\
TN
GEOMETRICAL, MECHANICARNAND PHYSICAL APPLICATIONE,
ay

Geometrical problems
Mechanical and physigal nhl(‘ms
Ezamples on Chapiery¥,

™

xiil

Pace

19 ,

1IN

114

114
115

11%
118
120

121
122
124

EQUATIONS MNVOLVING MORE THAN TWO VARIABLES.
A\

I - (HAPTER XI.
\V :

OI'DI&\QW; IHFFERENTIAL EGUATIONE WITH MORE T1AN Tw0 VARIABLES,

-
§ ,\;9

LN

10,

Simultaneons differential equations which are Iinear
Simuttaneous eguations of the first order

(General exprossion for the integrals of slmulmnoom Oqua.f.mm

of the first order

Geometrical meaning of blmulmneous dlffe}( llLl‘ll equatmns OF

the first order and the first degree involving three variables .

integrability .

. Bingle differential equations that are integrable. Condition of

. Method of finding the an’LI ion of lec smgle mtcsfrablc oqua.t.lcm

128
150

135
134

136
137



xiv

ARt
104.

105,

108,

107,

108.

110.

111,
112,
113,
114,
115,
118.
117,

118,
119

(oo,

X
) 3

) 121.

122,
123.

124,
125,

CONTENTS.

Pace

Geometrical meaning of the single differential equation wihich
is integrable . . . . . . . . . 140

The locus of Pdx + Qdy + Ldz = 0 s orthogonal to the locus
ot BE_dy_dz

F g R
The single differential equation whicli s non-integrable . . 2
Examples on Chapter XI. . . . . . . 2 \L48
Vo \
s W
CHAPTER XIL PENY
"
Parrian DivrFenkNTiaAnL EQpaTioNs, 2 {’

Definitions . . . . . . N4 . . 146

Derivation of a partial differential equation h{ the elimination
of canstauts . . . K ¢ . . 146

. Dc@vak{i;oa of a partial differential equatipn by the elimination

Wl b .. - i S 3
of ar 1!;1'331.%'3{;1 ﬁ:%;‘t‘i“‘o‘:%-o?'g““. A VY. . . . 148
Parrian INFFERENTIAL EQUM;"I:rSNs ofF TRE FirsT ORDER.

The integrals of the non—liﬂgéf equation : the complete and
particalar integrals XY . . . . . . . 140
The singular integral 2\ . . . . . . . . 150
The genoral integrad N . . . . . . . . 150
The integral of t{é.]i’ncar sguation . . . . . . 153
Eguation equj\%hnt to the linear equation . . . . 154
Tagrange's soation of the linear equation . . . . 164
Verificatiafjof Lagrange's solution . . . . . 18b

The lingar equation involving more than fwo independent
waTiables . . . . . . 156

,Eé@rhetrica] meaning of the linear partial differential equation 158
\ *pe B

Special methods of sclution applicable to certain standard

forms. Standard L: equations of the form F(p, g)=0 . ¥
Standard 1T, : equations of the form z =px+ gy + f(p, ) . 161
Btandard ITL : equations of the form F{z, p, g) =0 . ‘
Btandard IV. : equations of the form fifz, p) = fal, € . I

General method of solution 166@

Partian INFFERERTIAL FQUATIONS OF vHE SECOND AND 3
Hicurr QRDEKS.

Partial equations of the second order . . . . . 189

Examples readily solvable e & (]

i



ART,
126,
127,

128,

130,
131.

132,
1453.
134,
145,
158.

mEC O

£

11.

CONTENTS. v

FPace
General method of solving Br + S5 + Te =1, . . .17

The general linear partial eguation of an order higher than the
firat . . - . 178

The homogeneons equatwn w1th constant coeﬂﬁclents the
complementary fonetion . . . 174

Solulion when the auxiliary eqmtlon has repe'lted or imagi- "\:\’

nary rools . . . . . . . . . \175'
'The particular integral 176

The non-homogeneous eqguation anh eonstant coeﬁmlfmts«
the complementary fnzetion . . . . . 178
The particular integral . . . . .«\ . 180
Transformation of equations . . . . \ . . 182
Laplace’s equation, ¥2V =0 . . . A . . 182
Special cases . . . K7, N . . 185
Poisson’s equation, WT’ — 47rpwww dth‘hbT‘a‘l‘y o'rg in 186
Examples on Chapter XIL ¢ 187

AY
MSCELLAWolrs“Noms

Reduoeiion of equations to a sy‘btem of siinultaneous equations
of the first order . . . . . . . . 189
The existence theon em 3 . . . . . 190
Fhe number of corusta.r}tb of mtegl a,tmn . . . . . 104
Criterion for the\@iep(‘ndence of constants . . . . 195
Criterion for ghexact diferential equation | . 197

Criterion to{ the linear independence of the integrals of & lmezm
equatiény” . 197

Rel'{tm.l\s “hetween the llltC"I &Ib and the (‘uef’ﬁmen‘ﬁ of a lmear
qu'vtwn . . 198
Cf;}m rion of mtcgra.bﬂ[t} of Pd’.r + Qdy + Rdz = (J . . 200

M odern theories of differential eguations. Invariants . . 202

J‘ \ “The symbel 77 . . . . . . . . . . 206

j\

Integration in series . . . . . . . . . 207
Answers to the examples . . . . . . . . 209
Index of names . . . . . . . . . 233

Index of subjects . . . . - e e . 235



vl . CONTENTSE,

SIORT COURSE,

I; IL 10 20, 21; IIL; Iv. 30-34; V.; VL 40-53, 66-62; VIL
60 ; VI, 72- 81 IX. B4, 85, &7, 804K X3 XL ‘?TJJD,\I
103 106 XIL 107 -«Iltr 115122, 124, 125, 127, 1838, 131, { "

S
<
\ 7
Y
&

é
(The Roman numerals refer to chapters, the Arabic to articles) &%

}i"
4




DIFFERENTIAL EQUATIONS.

.____oomo“_._ t“\’
&Y
, ] o
CHATTER 1. \
O
DEFINITIONS, FORMATION OF A DIFF%RENTIAL
EQUATION. AL

-1, Otdinary and partial differential equ%brons Order and
degree, . differenticl eguatmmwl@wtg %ggmgp& Fhatg involves -
diffeventials or differential L‘OBﬂlban‘tS:

Ordinary differential equeations, ‘aré “those in which all the
differential coeflicients have rq;hel-ence to a single independent

variable, Thus, {;t‘ 3
dy = cos :gga:, . 1)
RS
=Q\.} . (2
d- .
wr)d 25—y +a)=0, @®)
NS/ _
o\ [ [ay\
AR Sy 1+(—?’), @
N e dz _
O 8
N 14 (@) 3
ot da _ ' ®
Y ay
v a‘w‘“f
oY
y=at+— 7 ©
de \
are ordinary differential equations,

B . 1:

\
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. MMFFERENTIAL EQUATIONS [Ca 1.
I

Partiol differential equatwns are those in which fhele ara
',i two or more independent variables and partial ditfferential eo-
' efficients with reference to any of them; as,
az—i—a,‘yga:?n‘z W
8.:!: dy

The order of a differential equation is the ordeps \oﬁ the
highest derivative appearing in it. > -
The degree of an eqnation is the degree of tha,tlnwhut deriv-

ative, when the differential coefficients are fréet from radicals
and fractions. Of the examples above, (143 O the first order
and first degree, (2) is of the second griier and first degree,
(4) is of the first order and second dedrde, (3} is of the second
order and second degree, (6) is of\he' first order und second *
Gegreed brEnlihe &l taleulus 4 v“ely simple clags of differen-
tial equations of which (1) is abexample have been treated.
Eguations having one defpendent variable y and one inde-

pendent variable wﬂl ﬁist be censidered. The typical form
of such eguations is,

dy r'c"‘?;
2\ }(:I}, Y =0
de"
L\Y

7 dan

" 2. Solutiofs)and tonstants of integration. Whether a ditfer-
enfial equafion has a solution, what are the conditions under
which At will have a solution of a particular character, and
}m fYuestions arising in the general theory of the subject ares

y matters for an introductory course® The student will
Jremember that he solved algebraic equations, before he could
) prove that such equations must have roots, or before he had
more than a very limited kunowledge of their general proper-
ties. This book will be concerned merely with an exposition
of the methods of solving son??“’g:‘nrtwulal classes of differential
equations; and their solutions“¥ill be expressed by the ordi-

nary a_lgebram, trigonometrie, and exponential functions.

* ¥or a proof that a differential cquation has an integral, and for
references relating 10 this fandamental theorem, ses Note B, p. 190.
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§2.1 CONSTANTS OF INTEGEATION. 3

A solution or integral of a differential equation is a relation
between the variables, by means of which and the derivatives
obtained therefrom, the equation is satisfied. '

Thus y=sinx is a solution of {1);

= and y=me+rvi+mt T A
¢
are solutions of (4) Art. 1¥ In two of these solotiongyy is
expressed explicitly in terms of «, but in the solutiogs of dif-

~ ferential equations in general, the relation between w and yis

-oftentimes not so simply expressed. This Taﬂ‘he seen by

glancing at the solutions of the examples on &hapter I1.
A solution of (1) Art. 1isy=sina; aanther so]utlon is

_'y-51nsc+cj W wi}dl

¢ being any constant. By eh.mgmg the value of ¢, different
solutions are obtained, and in partmulaa by giving ¢ the value
eero, the solution y = sinw 13 othamcd

A.soiutlon of \ dx’;-l-fr; = (2}' .
is 3 = stn @, and Anodther solution is y = cosz. A solution more
general than uther of the formeris y =4 sin; and it includes
oune of them;\a‘a is seen by giving A the ]J&lt](,ll]dl’ value unity.
blmllavly\yc: Bcosw inelndes one of the fwo tirst given solu-
t1011Kf\(2) The relation '

y=Acosz+ Beinx o 3

15 a 3 et more general solution, from which ali the preceding solu-
“ttons of (2) are obtainable by giving particular values to 4 and B.

The arbitrary constants 4, B, ¢, appearing in these solutions
are called arbitrary constants of "aegration.

Solution (1) has one arbitiz , ~ nstant, and solution (5) has
two; the question arises: How many arbitrary constants must
the most general solution of a differential equation-contain ?

* Bee page 12.
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The answer can in part be inferred from Lhe eonsideration o]
the formation of a differential equation. g

3% The derivation of & differential equation. In thie proced
of deriving (2) from (3) Art. 2, 4 and B have been made fo dis
appear. To eliminate two constants, A and £, three cqudtmne
are required. Of these three equations, one is given, nairhely
(3), and the two others needed arc obtained by bu@czssm

differentiation of (3). Thus, K .,‘:
'/71 = Asinz + Bosm, m\\
%—Amsz_ﬁsn}'q{\d »
W, dbrauhbrag;y%?g" 4 5"? o) CBloos.
Whence, 3:.:1; +y -—.0 A\

Now consider the generaI process. The equat;ion

Tf@’) ¥y Cy Cgy -~ Cn) = (1‘

L,onta.ms, bESldeS\Sl: and ¥, » arbltlary constants ¢. ¢z, ,6,
leferentlatlon % times in suecession with respect to » gives

W dy -
ay aw— "

' a=3f 4o O dy & dy & dy_
,\f':" a7 ' * Gw oy da 6y2 T3y EJJ do?— 7
) 6“f o dy

6.1‘.‘" ) * * + ay dﬂ:“

. Between the original equation and the  equations thus O'UE
tained by differentiation, making = -1 equations in all, thg

* See B, Williamson, Differential Caleulus, Art, 311; J. deardé
Differential Calculus, Arts, 506, 507, 3
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The answer can in part be inferred from the c:onsndm'a,tiuu ot
the formation of a differential eguation.

."3* The derivation of a differential equation. In the process
of deriving (2) from (3) Art. 2, .t and B have been maile to dis-
appear. To eliminate two constants, /4 and B, three equarwns \
are required. Of these three equations, one is given, 11dmaly\’
(3), and the two others neceded are chtained by sue 3}:1?

differentiation of (3). Thus, P\Y
/y = d sinz+ Beosw, \:
Ay \N%

an =d cosz — Bsina,
K9,

www.dbraulibr arﬂ@; in 4 giny < ﬁ\oq 5

X R
whence, (;_3; +y=08"

Now consider the generabprocess. The equation

f{a}\f Cry €y vey ) =0 (1)

contains, bemdes \s}and #, n arbitrary constants o, ¢y, v e

N 4

D]ﬁerentlatwn % %imes in succession with respect to @ gives

Jf Cardy
."\~ +6y dz =0.
O e, g, By, o
~N G2 T B oy dﬂ:—l_l‘?_} dz) ' ey dxt
.n\’o . . . . . . .
’ a-f af dvy
@t ThmwT

Between the original equation and the n equations thns ob-

- tained by differentiation, making » 41 equations in all, the

B

% See B. Williamgon, Differential Calewlus, Art. 311; J. de'udq,
Differential Caleulus, Arts, 506, 507,
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.,} FORMATION OF A DIFFERENTIAL EQUATION. 5

n constants ¢, gy, 1ve, € CAL be eliminated, and thus mll be
formed the equation

P00 e i) =0 ®
Therefore, when there is a relation between » and ¥ invelvin
% arbitrary coustants, the corresponding differential relafion
which does not contain the constants is obtaiued by ‘elimi-
nating these » constants from the » - 1 eqoations, mfx&e up of
the given relation and # new equations arising frcgn 7 succes-
sive differentiations. There being n d1ﬁuent1atxlt>}s, the resolt-
ing equation must contain a derivative of the nth order, and
therefore a relation between » and g, ¥ n%tﬂvmg n arbitrary
constants, will give rige to a dﬂ'fer ﬁ Laquuatmn %f] fhe nth
order {ree from those constants. JEhe equa,tmn obtained is
independent of the order in which, and of fhe manner in
which, the eliminations are efﬁéitea *

On the other hand, it is Javident that a differential equation
of the nth’ mder cannot hidve more than n arbitrary constants
in its solutlon for, 1f\1t had, say »n + 1, on ehmmatmg them
there would appear; ot an equation of the nth order, but one
of the (n + 1)tk order.f

Tx. L Frel’; ol 442+ 2ax+2by+e=0,
derive o differential egnation not containing «, b, or .

#

e IONS ; : : :
Dl%rgntlat-mn three times in succession gives
\

“ x-’,—ydm—}-a—l—bdy =0,

S\

| 2) (g8 +o(G)=
1+( )+ (dz:? +o gt 0,
dyd?y Ay Py _
d:cdmf}_ygﬂ‘—f—bdﬁ =0.

* See Joseph dear'ds, Differential Caleulus, Art. 507, after readmg
Arts. 8§, 6, following.

T For a proof that the general solation of an equation of the nth order
contains exaetly n arbilrary constants, seg Note C, p. 194,
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‘The elimination of » from the last two equations gives the differential
equation required,

dy\2 2% (d y) 0
[+ (@) 123 t) =0

Fx. 2 TForm the differential equation corresponding to
¥2—2ay 4+ xt=a?, ¢\
by eliminating a. NS ©

Ex, 8. Eliminate « and g from (x — a)2+4 (¥ — 8)° = r{

4 Lix. 4. HEliminate m and a from y° = m (a? — x~)- ,
T N\

"4, Solutions, general, particular, singular, he solution which
¢ontains a number of arbitrary constants, équal to the order of
the equation, is called the general solatioh or the complele inte
gral. Solutions obtained therefromyby giving particular values
to the constants, ave called partfelar solutions. Looking on
the differential equation as d.efi:{f*ed from the general solution,
the latter is.allaththaltomplditpuim itive of the former.

Tt may be noted that-frem the relation (1) Art. 3 several
differential equations ¢fin be derived, whicl ave different When
the eonstants chosen“t}o be eliminated are different. Thus, the
_elimination of al the constants gives but one differential equa-
tion, namely (Zf\for the order of elimination does not affect the
equation fornled“ The elimination of all but ¢; gives an equaticen
of the (n~I)th order; elimination of all but ¢, gives another
equatzot\o’} the (» — 1)th order; and similarly for ¢, .--,¢, S0
from (), » equations of the (n —1yth order can be dcrn ed.
There ore (1) iz the complete primitive of one equation of the
,n\th ‘order, and the complete primitive of » different equations

&) ot the (n —1)th order. The student may determine how many
equations of the first, second, -+, (n — 2)th order can be derived
from (1).

The general solution may not include all possible solutions.
For instance, (4)y Art. 1 has for solutions, a® 4+ y*=+% and
Y= 'mw-i—'r\/l +m® The latter is the general solution, con-
taining the- ‘arbitrary constant m, but the former is not deriva-

i
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b g 4] SOLUTIONS. 1

ble from it by giving particular values tom. Itis called a sine
“gulor solution. Singular solutions are disenssed in Chapter IV.

The » arbitrary constants in the general solution mmst be
independent and not equivalent to less than n constants, The ,
solution y = ce*** appears to eontaln two arbifrary censtants ¢
and «, but they are really equivalent to only one, for , .\:\

o = patte — N
Y = ee™te = cene® = Ae?, 4

and by giving 4 all possible valueg, all the particulax soiutlons,
that can be obtained by giving ¢ and « all possﬂ)b &alues, will
also be obtained.®

The general sclution can have various foring, but there wiil
be a relation between the arbitrary Gonstm\xtﬁ of one form and
those of acnother For example, it haa‘been seen that the gen-
-eral solufion of - .v*+ #=0 i3

"

¥ == gin & B COS K.
W dbrau ibrary.org.in .
But y = ¢ sin (£ + «) is alsan solution, as may be seen by sub-

stitution in the given equatlon and 1§ is & general solution,

sinee it contains two mdependent constants ¢ zmd . The lat-
fer form exp.mdeis%

’fy—wcosasinw—}—cqino:cosx

On cmnpamng this form with the first form of solution given,
it is evidént'that the relations between the constants 4, B, of
the ﬁg"\fozm and ¢, &, of the second, are

A=c¢ CO8 ¢, and B = ¢sing,
.that ig,
4 ¢=VA+ B, and & = tan =

If the solution has to satisfy other conditions besides that
made by the given differential equation, some or all of the
constants will have determinate values, according to the num-
ber of econditions imposed.

# Bee Note I) for a criterion uf the independence of the constants. -
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s é-eometrical meaning of a differential equation of the first
order and degree. -

d
Take f (T') ?f}l %) = 0! (1)
: i ~
an equation of the first degree in Eig It will be remembered,

that when the equation of a curve is given in rectangular
co-ordinates, the tangent of its direction at any‘fpg{int 153—:’;
For any particular point {, ), there will be\a a eorresponding
partieular value of 3%, say m,, determined By)equatior: (1). A

point that moves, subject to the restriction imposed by this
equation, on passing through (=, yl)’\ir«mst go in the direction
my. Suppose it moves from {m, ¥)Jn the direction wm, for an
infinitesimal distance, to a poinb{w, ¥:); then, that it moves
from (zy, ¥;) in the directioncm, the particular direction asso-
ciated with (i, ¥;) by the eguation, for an infinitesimal distance
to a point (w, ¥5); thencﬁ,.’ under the same conditions to (2, %),
and so on through sw¢lessive points. In proceeding thus, the
point will describe’ '5\\3111_'713, the eo-ordinates of every point of
which, and the direction of the tangent thereat, will satisfy the
differential eqhgtion. If the moving point starts at any other
point, not, 0w the curve already described, and proseeds as
before, it wdil describe another curve, the co-ordinates of whose
pointgngnd the direction of the tangents theveat ssatisfy the
equation. Through every point on the plane, there will pass

\.a"pa.rticnlar curve, for every point of which, =, ¥, %, will sat-

"I\Visty the equafipnrabhe- 13{;@3;}1 of each curve is thus a par
ticular solution of the differential equation; the equation of
the system of such curves is the general solutions and all the
curves represented by the general solution, taken together,
;na.]_ie the locus of the differential eguation. There being one
arbitrary constant in the general solution of an equation of the

first order, the locus of the latter is made up of a single infinity
of curves.

2
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§5, 6.7 . GEOMETRICAL MEANING, o

Ex. 1. The equation dy_ = . .
: dx Y

indicates that a point moving so as to satisfy this equation, moves per-
pendicularly to the lne joining it to the origin; that is, it deseribes a
girele ahout the origin as centre,

Patting the equation in the form

wide+ydy =0, o~ 2 AN
it is seen that the general solution is : X O
2+ = ("f},
The circle passing through a pamcular point, as (3, 43, i 13\\
a2 4 g2 = 85,

whieh i a particalar solution. The general solutionhus represents the
system of circles having the origin for ecentrg,’snd the equation of each
one of these cireles is a particular solutiex™ ‘That is, the locus of the
differcntial eguation is made up of all the c‘ircles, infinite in number t.ha.t :
have the origin for centre,

Ex. 2. WWW, ?5‘}'&1{:‘ l?}‘ﬂl ¥ org in

has for its selution, :a:?,f =g,

the equation of the systed uf hyperbolag, infinite in number, tha,t have
the « and y axes for asmptotbs
N

Y dy
Ex. 3 O
: ¢ . A - dx m
A
having fol','{s“solution, y = WmH -+ ¢,

hag f\"ﬁs Y6eus all straight lines, infinite in number, of slope .

2 8

+6." Geometrical meaning of a differential equition of a degree

Cor'an order higher than the first.

ot

. i o

1t o f(:c, A d—;:) =0 2
is of the second degree in %, there will he two values of fz_y
. . T

belonging to each partienlar poind (@, ). Therefore the m&;— |
ing point can pass through each point of the plane in either of
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10 DIFFERENTIAL EQUATIONS. [Ca. T,

two directions; and hence, two curves of the system which is

_ the locus of the general solution pass through each point.

The general solution,
’ ] (a’) ¥ C) =0, )
must therefors have two different values of ¢ for each pohﬁ;
and hence, ¢ must appear in that solution in the secopd degree.
In general, it may be said: A differential equati?n,
f(ﬂ?; K % :01 ) \( p

which is of the nth degree in %E, and wiibh) has
- i

A\
b (33: ¥ ) :’Q\
for its general solution, has fonits locus a single infinity of
curves, there being but one arbitrary constant in ¢; » of thew
curves pass through each point of the plane, since f.;_g has »
3 _ -

values at any point; a‘];lél‘l"lence the constant ¢ must appear in
the nth Gegree in thergeneral solution.
The general solgxt:ion of a differential equation of the gecond

order, ™
Ay
‘ £ ) > s d—x’ @ = D,
. AS .
contains (tWo arbitrary constants, and will therefore have for
its locs”a double infinity of curves; thatb is, a set of eurves
oo Jdumber.,
x \ Ex. 1. ' L
N dxz ™

. =mx + ¢
w and ¢ beiz}hé\a%{%tba&?{hbmry'é’rg'm ’

A line_ through any point (0, ¢), drawn in any direction m, is the locus
of a particular integral of the equation. On taking a particular value of
¢, 82¥ ¢1, there will ba an infinity of lines corresponding to the infinity of
values that = can have, and all these lines are loci of integrals. Since o
each of the infinity of values that ¢ -can have there eorresponds an infin-
ity of lines, thescomplete integral will represent a doubly infinite system
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of straight lines ; in other words, the locus of that differential equation
sonsists of a donbly inflnite system of lines.

This can be deduesed from other considerations. The econdition
Py
dat .
moving point shall have zero curvature, that is, it can be any straight
line ; and there can be o2 straight lines drawn on a plane.

=0 requires, and raquires only, that the ecurve “described by the

N
RGN
Ex. 2 Al circles of radius 7, «w® iIn number, are represented bgr\the’
equation

ol

F—al+ @-02=1" ' Y

where & and b, the co-ordinates of the centre, are arblt.ra.q\ "On elimi-
nating ¢ and b, there appears )

{1+(d_?")2}f‘ﬂdi9. )

Thus, the loeus of the latter eqguation of the aec\d order consists of the
doubly infinite system of circles of radlua gt

Fx. 8. The locus of the dlﬁe‘rentla\ & ua.tlon of the third order, derived
in Example 1, Art. 3, inchadds- fﬂﬂl' [Lﬁﬁsar $OUE fumber; for It is
derived from a complete pI’lmltJ.VG'Whlch has &, b, ¢ arbittary and thus
represents circles whose ceusreﬂs and radii aro a.rbitra.ry

It will have beer\observed from the above eéxamples on
lines and civelesy, that as the order of the differential equa-
tion rises, its Iocus assumes a more general charaeter.

A/

»\\ - EXAMPLES ON CHAPTER .

AN
1.',‘3'?}}minate the constant ¢ from V1 —x¥ + Vi — =g (x — )
y ';5 Torm the differential equation of which y = ces"™* is the com.
\pléte integral,
3. Find the differential equation eorresponding to
3 = ge + be— 4 ce=,
where a, b, ¢ are arhitrary constants.

4. Form the differential equation of which e c)fs =% is the com
plete integral.

V5. Eliminate ¢ from y=cx +e— b
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V(Lhmmat-e ¢ from ay? = (z — )
% Form the diffcrential equation of which e% + 2 czer +et=0 is
the complete integral.
\-B/Eliminate a and b from xy = ae® + be™%
9. Form the differential equation which has y ~ & cos (mz -I— .‘Q for
its eomplete integral, @ and b being the arbitrary coustants. AN

10. TForm the differential equation that represents all parabolas each
of which has a latus reetum 4 g, and whose axes arg *pa.l‘a,llel to the

Y

N\

axis.
v , N\

11. Find the differential equation of all eircles\which pass through the
_origiu and whose centres are on the z axis. \

12. Form the differential equation of a‘ll\pa.rabolas whose axes an
parallel to the axis of y. ¢ ,\

-13. Form the differential Eq‘llatlon pf a,ll conics whose axes coincide

>

.Wlﬂl the axcs of co-ordinates, R
" M4 Eliminate the constants frbm ¥ = ax + bxl

Nors, [The following is mtended to follow line 6, page 3. ]
Ex. 1. Show that x? ~<t y? = 2 is a solution of equa,twn (4) Art. 1,

Differentiation g@s % + yj =0, whence % —__=*

y
Suhbmtutlon of this »a.lue of g in 4 gives ¥ = _z + r‘\’l _!_9:_‘;
. Y ¥
which reduc(,s to 22 4y =l
_Ex._;zxﬁho_w that g = mx 4 #v1 + m? is a solution of (4) Art, L
Differentiation gives jg =m.

T,

e O .: . N . . dy :
o ) Substitution: of this value of d—z in (4) gives ¥ = mx + rvV/1T + ml

L\ W
4

dy

- Ex. 3. showuhdbusulibrpeyegdnolution of (%)2.‘. -
X

Ex. 4. Show that ¥ = a2 + bx is 2 soluti ﬂ_%i@_’ ,2;!;
umn‘)fdz? :cdx+zi'-0‘

2 dv

© Ex. 5. Show that » = —-+ B is a solution of °% 4% St =

v ar

- * .- J
. Ex. 8. Bhow that y = -:te"ac =+ be—% iz a solution of g’;&ﬁ — 2y =0,
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" whenee, on idtegrating,

(3 log(l+w+leg(l-2)=2¢
4 A+yi-2)=e¢=c1

- In equations {3) and (4) appear two ways of expressing a general
solution of the same equation. Both are egually eorrect and equally:
general, but the one has the advantage over the other in meatness gmd
simplicity, and this wonld make it more serviceable In applications{ ‘}1}
some of the examples set, the reduction of the solutions to formst n%atpr

and henee

‘and simpler than those which at first present themselves, ma,y Ieguire 2s

much Iabonrr as the solving of the equations. The solution (4) coitld have

Pbeen obtained without separating tha variables, if one h@\nomced that

{1 — @)@y — (1 + y)dx is the differential of (1 — 2)(1% ¥). Here,asin

the caleulus and other subjects, the experience that ¢hthes from practice,

iathe best teacher for showing how to work in t.hts.eamest way. FEqua.-.

tion (1) can also be put in the forin \
dy — die — (xdy + dea 0,

and snother form of the sulut.mn obtalngd, namely,

ww B -dbzmxljbpam’ org.in T

Solution (4) reduces to this forud on puttmg o fore —1,

g
Ex. 2. Solve +‘\ 5= 0.

Ex. 3. Sclve (ymg)_,a(ye,{_qy)

dx
Ex. 4. Solve2¥ tan ydio {1 —eYsectydy =0
Y NS

9. Edgétﬁﬁns homogeneous in © and . These equations can
be pih i’ the form :
QO dy L@ B
de f(w )
where Jis fo are expresgions homogeneous and of the sgme
degree in « and y.  On putting ?

*

.\: 3

y=vr, ¥
this eguation bacomes
d.

u+xd—;=F(v},
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. since each term in f, f3 is of the same degree, say =, in x; and
_@* ig thus a factor common $o both numerator and denominator
of its right-hand member.
Separation of the variables gives e
de  _dw
T
Fpy—-v Ke N

the golution of which gives the relation between = a.nd\'u that

is, between ¥ and ¥ 2, which satisfies the ogiginal eqnat,mn

Ex. 1. Solve (2 4 y%)dr — 2aydy = 0. M‘\{’
Putting y = v gives (1 + v2dde — 2o(aedy + vd’.z) — D which, on sepa-
. ration of the variables, reduces to A\J

2 i-v? ‘-’-‘3
Integrating, logz(1 — 'v ) £ lon' e
T0un changing the logarithmic furm to the exponentaa} and puttmg L

for v, the solution becomes O
;z;—' - g,r? = &x.

~Ex. 2. Solve y2dr + (:r{’:f— 2Ny = 0.
, “Ex. 3. Solve xﬂydxé.(éﬁ + ¢Sy = 0.
“Bx 4 Solve (4«;; -+ 3;c) iy +y—2x=0.

3 10. Non—homogeneous equations of the first degree in # and ?;
" These eqqg lons are of the form e

,’(\ : o dy _ ar4+by+e - ":'01 :{
3 . de  a'r+dy4e s @

\wFor & put &' 4 &, and for ut y' -+ &, wheré & and % are
. mstants; tieh wddmb TP ear %yg dy', and (1) becomes

g__lg_’ am+by"+ab+bk+c
da'  alat +by+a’k+b'k+c'
If h and % are determmed so that

ah A-bk+e=0, ° e




 then (1) can be written

)

[}

: method_of. solution to Be emplo \ed when that conéht.m

§10,11.]7 EXACT DIFFERENTIAL EQUATIONS.

—

and : - a4+ bEFe"=0, ’ J: - _
Ay e by
then (1) becames i ﬁ, - (2)4

which is homogeneous in 2'and ¥/, and therefore selvable by{
the method of Art. 9. :
If (2) has for its solution A ‘".\
'ﬂ:ﬂﬁf, ,yr)=0 A N .

a
<

the solution of (1) iz fi(x — A}, (y — k) N

3 This method fails when .a: b=a':? k a.miw then being

‘infinite or indeterminate. Suppose
e b _1 S0

al b N
dy g ﬁé’g +o
T m‘\m ol rg in
“On puttmg » for aw + b@;, the latter equation beeomes

Y= b [
’\\d @+ mv+cf

™
*where ‘the vag:mbies can be separated

iF

\&@5 1. %olve (%y—7x+7)eh+(7y—3:c+3)dj——
Solve (y— 3.0—1—3)-»-—__2_;-:\:—4

\\ .

Ml. Exact dlﬁerentlal equ .4 differential equation - whlch
has been formed from %tgipnmmw‘e\by differentiation, and with-
out any furthm Operatxon ot Blimination ot Feduttion, is smﬂaz_
'be emact, ‘or, in other w@rds, an exact diﬁ‘e: entiol equcmm
10rmed by equating an- exact differential to zero. - There ki

16w to be found the.condition N\lgh thie coefficients of an equa-

tion must’ satisfy, in order that ¥ may be exact, and algo the’

R - L
. ;5. . \_

L L, kY 5

]
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 satisfied. The question of how to proceed when the conditio
- js not satisfied will be considered next in order.

7 +12, Condition that an equation of the first order be exact. What

:* s the condition that &
. ' Mdw -+ Ndy =10 ) \s\{l) .
be an exact differential eguation, that is, that ﬂ[dx:%}‘ﬁ“?y be
I an exaet differential ? In order that Mdx 4 Ndyh?eé “an exact
. diffevential, it must have been derived by differgntiating some
© funetion » of x and y, and performing nofother operation.

i
i
C ok
il

That is,.
du = Mdx + Ndy. N\
. . du d \\“
But e = —Zda - .K(Z_?).
die ND)

Hence, the conditions RECESIUT Y3, that M -+ Nely be the differ-
ential of a function w, are thaty®

M= y=8n @)
: : W O dy
-+ The elimmation of .u\i’mposes on M, N, a single condition,
o O
3 NN M _ N .
. T = (3)
. O\ ay du :
. .« since each'gfdthese derivatives is equal to - 0%
y i O dx dy

e _ Thig«{ﬁ&aition is also sufficient for the existence of a fune
tion et safisfies (1).* If there is a function w, whose differ-
* ential du is sueh thag
A b ' du = Mdz + Ndy,

. ) Then on integrating relatively to &, since the partial differential

Mdz can haVve” He%ira&gj‘l%%@r ﬁiﬁ“lﬁom the terms containing «,

% = ) Mdx - terms not containing a,

w = | Mdx -+ F(y). o

* For another proof see Note E,
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Differentiating both sides of (4) with respect to ¢,
du__ J fl” +(IF(@;)

ay oy
But by (2}, %” mugt equal N, hence
Wy 2 (e
; K
The first member ot (%) 1s independent of r3 80, a}so}ﬁ; the
second ; for differentiating it with respect to & giv %‘% — %i{
¥

which, by eondition (8}, is zero. Integration oﬁ\both sides of
{5) with respeet to y gives

B z‘J‘S N —ifﬂfdx.)&i&};{} a,

where a is the arbity ar\f constant of 1ntegmtlon Substitution
in (4) gives

u _fﬂrdxwf ﬂEﬁ"*’*’f&iﬁﬂ‘HJ+ o

Therefore the prumtne of (1}, when condition (3} is sa,tls

fied, is
fﬂ{ii%’-i—f{ﬂ’—(%fﬂfdx}dy:a ®)
Similatly‘,\ﬁf'l\@y + f { M %dey } do=g¢

ig also Y ébl"ution

\Rule for finding the solution of an exact differential equﬁion
Sluce all the terms of the solution that contain @ must appear in

Mda, the differential of this integral with respect to y must

" have all the terms of Ndy that contain x; and therefore (6)
ean be expressed by the following rule: :

.~ To find the golution of an exact differential egnation,.

\ _Mdz 4+ Ndy =0, integrate Mdx as if y were constant, integrate

4 the terms in Ndy that do not give terms ‘already obtained, and

_f equate the sum of these integrals to a._, constant.

L

L2 . : s Faw
. P B :
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Fx. 1. Solve (&% —day —2y%de +(y* — dxy —220)dy =0,

E !f_ Here, §M —4drx—4y= 13—‘\:; hence it is an exact equation.

a dx
jMd:r, is ‘ié- — 22y — 2aw?; y2dy is the only term in Ndy free from
i Therefore the solution is Ko &
iy 3 R e\
3 2oty 2up+ Pme,
T 3 3 A\
" . <™
or Gty —But 4 yi=e K7, \ A
k W

«. 'The application of the test and of the rule can sglastimes be simplified.
By pleking out the terms of Mdx 4 Ndy thasabviously form an exact
differential, or by observing whether any ofsthe terms can take the form
" fow)du, au expression less cmnbersome chm the original remains to be
tested and integrated. }
For instance, t.he terms of the eqﬂa.tlon in this example can be rea-
rahged thus :

o At L gt dy — (4x;+~2_;3)d:c—(4a'y+2z9)dy 0. y

= The first, two terms are exact’ dlfferentlals, and the test has to be apphed
: to the lagt two only. S

5. i m\ 2
}’“& 2. - ‘,rd,,( Ty m__dm:o
Ve S Y ey

[ bacomes, on d.]\ruimg the numerator and denominator of the last term
.0 by al, PY

:t\'“t d(g)

"\WV ]
X - N\J- rde+ydy+ ——~L =0
N T

C Y

ol
N

(“each term of which is au exact differential. Integrating, '

T 4 g2
wwwdbraulfﬁr&%&,a{rmmlg =

Ex. 3. Solve (o —2xy — yNdx — (2 + ¥¥dy =0,
. Ex. 4 Solve (2azx + by + ¢dx +{2ecy + bz + e)dy = 0.
Ex b. Solve (aty L 425 — 12292 4 32 — gev 4 ey dy
: . +(12¢3y+2xy2+4x3-4y3+2ye-‘—e¥)dzt=9-__'
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14 Integratmg factors.  The differential equation

yiwe — wdy =0

JF ngt exaeh, but when multiplied by o 1t becornes

o de — xdy N
| Y gmdrl -0, | O\

¥

. . O
which is exact, and has for ifs solution L W
2_, A\
¥ " ,\ Ny
When multiplied by L the above equationbecomes
xf x.\\.’ '
da  dy \ “ P
LA ) NS
& ) { ¥ " ¥

" which is exaet, aud has for its SOthlOll

. dbf‘auhbrary .org.in
165 Y= .

" which is transformable ingo the solution first found. Anather_
factor that can be used\thh like effect on the same equatmn

1 , 2
" )
Any fa.ctor ,u,«such as 1 —%-, ~ used above, which ehanges

an equatnm into an exact c11ﬂerent1¢l equation, is- called an

mteg@ﬁag Fasetor.

_ &5 The number of integraiing factors is infinite. The nuwm-

X “be of integrating factors for an equation Mdx - Ndy =0, is
) infinite. For suppose u is an integrating factor, then

\ .

p{Mdx -+ Ndy} du,

and thus ¥ = ¢ is a solution.

Multiplication of both SIdes by any functwn of u, say f(u),.

gives
wf () (Mid + Ndy) = f(u)du ;
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but the qecand membel of the ld.bt oquatwn is an exact differ-
enfial ; thercfore the first is also, and hence uf(¥) is an inte
gmtmg factor of the equation

Mde + Ndy = 0; ~
and as f(¥) is an arbitrary function of u, the number of\uh
tegrating factors is infinite. This fact is, howeven.of no
special assistance in solving the equation. . O

L 3

-16. Integrating factors found by ingpection. .~Sm¥ietimes inte-
gratmc factors can be seen at a glance, asmm‘the example of
Art. 14.

Tx. 1. Solve yd«:-—tdy—{—lo"xdx_(} \\~
Here logzdx i3 an Mact. d1fferent1'rl\ and a factor is needed for
¥ —zdy. Obwously = I8 the factof to *be employed, as it will not affect

the third Lorm anul‘lollb‘j’, from, the boint of view of integration. The

exact aquation s then ® \
y‘ -'::’%.;:t d?; lonr.c E.c =0,
. S
the solution of which 1’(@11(,‘33 to
¢ '\\ X+ y+logx+1 =20,
Ex, 2. Solvey (‘1 +aydydr + (1~ ep)xdy =0,
. Rearrzmgm t~hei terms, vde + wdy + ryide — 2% dy =0,

tha,t.is,"\x:\ a(2y) + 22de — w2y dy = 0.
1
FNhﬁs the factor 2 immediately suggests itgelf, and the equation
begomes

d(:ra;) dizy) | d dx dy
www.dbrauliBrity org in ¥

Integrating, L1 + Ino—j -

and transforming, = cye-“""..
I3 l

i MI.I; will be well to try to find an integrating factor by inspection, before '
- VIBg recourse to the rules given in Arts, 17, 18, 18, '
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Ezx 8 a(cdy .+ Ly da) = xydy.
Ex. 4. (wtem — 2may?) dr + 2malydy = 0.
Ex. 5, 422y + ) dx — e*dy = 0.
y17. " Rules for finding integrating factors. Rules 1. and II
Rules for finding integrating factors in a few cases will now \
be given* ¢\ \
v RULE@ VWhen My 4 Ny is not equal to zero, and the sequaa

Stion is homogeneous, ————— is an integrating fﬁﬂtﬂl‘ ‘of
Mz 4 Ny g
' m\

Mdre + Ndy = 0.

VRULE@ When Mz — Ny is oot equal\“to zero, and the
equation hag the form

&

Ay yde + f (g aly= 0

-+

L — 18 an integrating hctor;
Mo~ Ny Ny W, dbbaulibral y.org.in
FProor: _
=3 D ) - ()

is an identity. 'This may be written,
(@) Miw+ MIJL—\\{ (M + Ny logay + (M — Ny)d - logs }
Division of (a) b, Iz + Ny gives

Ml + Ny _
~\~ Moy Ny S 1°g"’-’+'~’111 +7v Za- lg
Nn%;f Mie + Ndy is a homogeneous expression Mﬂf is homo-

' Mx + Ny
ggmeous and equal to a funetion of 5, and .

N\
b Y

) Mix 4 Ny _ ; ( ) P
or, sinee g = éw;;,

* For a discassion on and determination of integr:iting factors, sea
George Boole, Differential Eguations, pp. 56-00.
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MHNy =jd-logzy + 4 gy ¥

which is an exact differential.

On dividing (a) by Mx — Ny, it becomes, {
£ ~\‘
d-logzy +4d- loay N\

\l

and 1f Mz + Ndy is of the form filay)yde + fo(xi)x dy(‘bh{s will be

"Mdx + Ndy _ . Mx Ny
“ME - Ny A - ~ Ny

Mx — Ny~ ° flmwy — oyl

Mdx + Ndy _ | filap)my +f2(xy)zryd }bg ey + $d logh
¥

= Fi(xy)d . logry -F»}d - log g'
\ g x
. = Fy(logzy)dhJogay + 2 d - log 7

/
. N

witich is an exact differential, AN\

A
When M@w%dﬁ%ulﬁr ary@rgsllrllbbtltutlon for }\f in

_LWZQ.—FNJJ—-O

m\
and integration g nw@i;e solution « = ¢y,
When Mx — { ﬂ\@; =, ‘—E =¥ Substitution for .ﬂ_\{ in the differentid
e Fa x 4

~ equation augi‘iilt.’égra,tidn gives the solution wy = e.

1 Solve (et — 2oyl — (o — Ja2y)dy = 0,
Eg 2. Solve Bz, 3, Art. 9, by this method,

Ve s 3. Solve y(ay + 2 2%2)dx + a(zy — Zy?ydy = 0,
\

-~ 18. Rules II1. and IV.
§ @M _ aN
Rowe(TIR When W __ 4 ; i
U 1en ——— isa funetion of 2 alone, say flz}

el/@e 35 an integrating factor.



§18,19.) RULES FOR INTEGRATING FACTORS. 25

For, multiplication of Mde -+ Ndy =0 by that factor gives,
say, Mydx 4+ Ndy = 0; and differentiation will show that

an, _ am,
. dy dx
Ex. I (B4 924 2nyde+-2pdy=0.
Ex 2 (o +yDde — 2aydy = 0. : ' .Y
. . . A
\}u‘m@ When .@:’_M_[.il. 13 a function of ¥ alone) say F(y),
\
efFo’is an integrating factor, ~“’\ '

This can be shown in the same way as m &g& preceding rule.
Ex. 3. Solve (Bx2yt 4 2oy dic + (2 2395 — ,c:?;?iy‘
Ex. 4. Soive (yt + 2y)dw + (o + 2 y*i ’4 widy =
/119X Rule V. axm-1- L W&‘hele « has any value, is an
integrating factor of WWW: dbl,auhbrary org.in
xoyP (my dx + nxdy)=1,
for on uging the fa..ctonﬂ}?te equation becomes

¢ ‘.,\. - d(mxmyxn)___ 0
£

‘Mormve;{ﬁl\léil an equation ean be put in the form
\:v"’;i}”(myda: + nxdy) + xmyP(my de + ne dy) = 0,

. an i'ﬁ.teﬁrating factor can be easily obtained. A factor that will
ke zoyf (my do 4 ax dy) an exact differential iy g™ 1-oym—1-8,
“where « has any value; and a factor that will make

S

ary (mpy dx + n,2 dy)

an exach diﬂ:'erentia,l is g~ ey —l-8 where &, has any value.

* See L Ahbé Molgno, Caloul Différenticl et Intégral (pubhshed 1844),
t. HL, No. 147 P. 355, Johnson, Differential Eguations, Art. 32.
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These two factors are identieal if

wm —1—a=rxm, —1 — ey,

ahd xn—1—B=xm—1— 8. .
Values of « and «, can be found to satisfy these cond:tmns.
O\
Ex. 1. Solve (y® — 2yx0)dx +(20y® — a¥)dy = 0. ~ N
Rearranging in the form above, G\ gt

Yy de +2xdy) — 2?Rude + 2 dy)= 0

For the first term n =0, 8 =2, m=1, n = 2, a-nd\hence P T
its integrating factor. For the second term a 22,8 =10, m =2, 1 _1
and henee z2x—1-3y«~1 i3 ity mtcgratmg factor \

These factors are the same if

x-—l—-2x‘ \.
and 2x—1-2.hxk—-1

On solving for x and &', x = ﬁ b, and therefore xy is the common

integrating factor f termis
The equatiofi W %.* Y H%T&Ecﬂg in
fy{y*(ycgﬁ- Zady)— F(Eydz+2d}=
) Ji ‘Qv&y

TRET = -

Bx. 2. Solvel (2x% — 8y%dx + (32° 4 2ayS)dy = 0.
Ex. 3. Sof\r33 O 22%0de + (22% — xy)dy = 0.

20 ii%near equations, A differential equation is said to be-f
hnea\\l\w’hen the dependent vaxriable and its derivatives appeat
opily In the first degree.  The form of the linear equation df

~the first order is i

et d .

where Pand Q are functions of = or eonstants.

N

S h e .

The solution of d_y o+ Py = 0

that is, of f@ = — Pda,

IR



i
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§ 20.] ' LINEAR EQUATIONS. 1 §
is ¥ =ce §P% or yej“"**vz c. E
On differentiation the latter form gives !
ofPs (dy + Pyda) = 0,

which shows that e/ is an integrating factor of (1),
Multiplieation of (1} by that factor changes it into the exadf \

equation, s < N |
Py 4 Pyda) = ol Qde, -\
which on integration gives K7, \ I .
A\ Nt .
e Pz :fefpa:de +e )
or -yt furequiyl. @

The latter ean be used as a formulyFor obtaining the value
of ¥ in a linear equation of theJdovm (1).* The student is
advised to make himself fmué]br alg g:h theohgq?lr equation and
its solntion, since it a,ppea,ls Jvery requent y.

&y o :
Ex. 1. Solve xd—x-—f;fgi@-f- i, i

+£ ) '
"This is linear since(it\is*of the first degree in y and g_g Putting it ir

the regular form, it'hgcomes
< dy_a, 2+
RS dr =x x

Here R 2%, and the integrating factor 74 1
., %

Ug;i'@ that factor, the equation changes to

N _ _z+ 1
--dy -:f-'f o
r
¥ 41
';;_a_',“xa-{-l dx+ ¢
whence - =2 _ _1+ oz,
. 1 —a @

¥ Gottfried Wilhelm Lefbniz (1848-1716}, who, it is generally admitted,
invented the differential calculus independently of Newton, appears W
have been the first who obtained the solution (2. %

LS
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The values of 2 and § might have been substituted in the value of

as expressed in (2.

Ex. 2. Solve ¥ +ty=e “ .
o - »
Ex. 2. Solve cos?ox Ay oy = tan .
rhic £\*

T r\"\
ES ey " N\ o

Ex. 4. Solve (& + 1)‘2& — uy = e=(x + 1In+L, . O

a ) \,u:s

'

Ex, 5. Solve (=2 + 1);_}; + 2uy = a2

'21. Equations reducible to the linear fand. Sometinies &4z
tions not linear can be reduced to the linear form. In partio
Iar, this is the case with those of tlQ‘ form*

d? N\ v ’
;,g.f PUEQp, f

wher.c I _ﬁg}}“ ﬂh%ﬁ hfﬁll%‘}:‘g}%‘%% (l)rf1 x. F or, on dividing by y* i
multiplying by (— = 4 13 this equation becomes

A=n+ 1 “"\"g‘y‘+ {(—n+ Dy Pyl (- n+ 1)
\ L)% '

on putting. o f_o.?\@v"“,_ it reduees to
. w B .

:’.’\; @4_(1—“9;)}‘0:(1—-?1)(),
whicl ”{é:}ﬁiéar i e,
‘.; gy 1
1. Solve o o+ ¥ x2yb,

¥yt (Zy + ?_J'_

-5
[y
s =
On putting » for %78, this reduces ta ‘.';_" _ 5 © = — f 2%, the linear forx
; - e
: Its solution is L. 5 5 53
- B o= T o el -
; ] ¥ [ -

2]

o *.'This ié alzo called Rernoully’ . -
: 1708), who studied it ‘169;‘ t's equation, after James Bernoulli {16#
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Nore, In general an equatmn of the for‘m

f’(J) o+ By = @
where Pam_l' @ are ﬁ‘;gchops of z, on the substltutmn of v for f(¥) becomes

&
= + Pv Q: I
da: o A
which is linear, ) O -
* BEx. 2 Solve {1+ ¥Odr =(tan~1y — £)dy. ( '\;--.-J}_.’
This can be put in the form 4 ‘.':,‘ .
S oo, 1 tapdd ¥ \ ¢
* dy T4 #2 1+ y‘Z ~\\

[
;
i
:
i
i
i
|
i
:

‘ﬁhlch i§ a linear equation, y being taken as the mdependent variable,
Integration 43 in the last article gives the solution \ )

§ r=tanly 14 ce‘“‘“—{::.
Ex. 3. Qol?edii. y—Szg‘,ﬁf ’ _;‘t':
d ’:. 3
ﬂEx. 4. Solv_té 513{_;. —%—xyg .‘ N

W dbrallhbrar .in
Ex. 5, Solve Sz(l - xz)ye s (2a2 = 1)y =

EXAMPJ.. S ON CHAPTER k.
\6«', Eguations can samﬂ\z\ms be reduced to standard formg
! L (9:+y)9- "_CK [Put x-}-yﬁv] B (a2  pet)
2. x— — J'ém ; S '

28,
,A} I
s 8 By =avR LR \/ v
2 . oy >
J&, secﬂxtan ydz+ssctytan xdy—"0. .
_\“ .8 (2.7c—J+1)(h‘.—i—(2y—a:—1)(Iy— _
. V@ gi ¥ 3.::5(-2\/_1%2—)2:\: . .
(1 — =% :
dy |
10 — + ==
0 xdx—{—_w i

|

]

| -
i | C o UGy atede @ ¥ - Bydy =0,
|
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¥ 4z 1 o 14 xl—m"—’—y-fzz‘*-f—.
12 e VT @ I o 14 x( oz T )y-o.rf.
18. @y de — (28 4 ¥o)dy = 0. ,@ (e + 42+ 1)de — 2aydy =0 _

16, zdr + ydy = m(zdy — ydr).
- 17. Integrate Ex. 16, after changing the variables by the mnsiormatm

®=rcosf, ¥ = rsind '\\
3 .’\ 5
. ¥ ¥ ._f) =0 < ay _ sa_ )
. @(I+e)dw+e(l ydy_{). 21. i = xzBy3 :cy“

- ‘f'-.ls. g—i—[— yeosz = yrsin 2 x. @ ydx+(a$2$'—23)dy:|}.
N\ L .
A @ D 1 =2e . 5 28, (L HBQRE B3] = Sy

dy nY,
2 oy(xt + v+ az) ot a(a? +{2 1) =0 )
25, (z%° + ay)dy = da. 99‘ y @y + byPdz = a cosza
.. o\ J
s VT N 30 2oy de + (7 — 22)dy =0 ¢

£ . ey :____';,_:_‘._:& o
PR VE+ Aty = Vﬁ*.jé"z — . -3l (:cyz -~ e_%dx —atydy =0 g

] d 9 d d
A = (e - Y1 s 0. 3 S ( y)
&t g, +( i Al L U

K+ 4)de — (424 Gy + 5)dy = 0.

Ve
35. (22587 )% dy=0. 37 (‘;24-_;,«:%
&
dy 1
ar= B -y =at

www.dbraulibrary.org.in




§¥2.] EQUATIONS NOT OF THE FIRST DEGREE. 31 .

.

N

= CHAPTER L O

EQUATIONS OF THE FIRST ORDER, BUT NQT or
THE FIRST DEGREE. RG

22 Equations that can be reSolved into compon%:;t equations
of the first degree. In what follows, ;1 Wlk e denoted by p. .
The type of the equation of the first c{der and nth degree is

P+ Pl Popn A +P p+ P =0, &
where P, Py, P,y 2re functionsof = and . X
Two cases appear for Yédﬁ‘g'}dbi'&ﬁ](’;hmv‘% gran
A{a) where the first member of (1) can be resolved into

| rational factors of the Hrst degree;
{b) where that member cannot be thus factored.

In the hrst ea.se\(\}) ean take the form R
. 4 (19 BY(p - B~ {p— By=0. 2)
Eq‘lla.tli;)‘l'}\(i) is satisfied by a value of y thdt will make any
faetor ¢f\the ﬁrsﬁ member of (2) equal to zergy Therefore, to
obta‘im\ﬂm solutions of (1), equate each of th:zctors in (2} to
fe‘m., and obtain the solutions of the = equations thus formed.
$ {(Phe » solutions can be left distinet or eombined into one.
/ Buppose the solutions derived for (2) are

Silm y ey =0, {2,y ) =0, Jj:l(m} Y cg 0, )
" where ¢, ¢, -+, ¢,, ate the arbitrary constants of integration.
These solutions are evidently just as general, if ¢, =¢ = «
= ¢,, since all the ¢s can have any one of an infinite number -
~of values; and the solutions will then be
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S,y )= 0, f (.’.L, i -‘) =1, - ,_,f;‘ (;;r.', 3, 1) == 4,

These can be combined iuto one equation; namnely, Iz
hG g o) fla ) 0y o) =0 . (3)
Ex. 1. p% + 2xp? — y2p¢ — 2xyp = 0, can e written .
pp+2e)(p— y=0. ~ ~D

Tty component equaiions are G Dt

p=0, p+2a=0, p—y=0, .
of which the solutions are w

g=c¢, ¥+et=r, and vy 4+ oy AN ¥y, -
- respectively, The combined solution is \ .
(y—ﬂ)(J-HS‘—()(U*f\i 1)= 0.

When the equaticn in p is of the secoh.d dewn( somelimes the solution
readily presents itself in the forn (.;’) 3¢ in the next example,

L. Ex, 2. Solve (ﬂg/wd‘hﬁadhbraly org.in 3
P '
¥ provialic atxt,
Inteorating, \x dte= 4 ¥ aiel,
Rationalizing 25(y + )% = 4 a2d,
or V4 - 26(y + )2 — daxd = 0.

\
4

. Ex. 8§, Qol&'e p*(z+2_;)+3p2(x+y)+(_;—| 2aip =10,

5
st 4 4
E\% Bolve ( :c) = qxt.
Ex 5. Solve 4y 4+ 2poy(Bw+ 1)+ 33 =0 %
\ VEx. 8. Solve pE—Tp+12=0.

23. Fquations that cannot be resolved into component equations
Metliods, which may be tried for solvi ng equation (1) of th

- _]a,st'. a.rtu,le, when its first smember cannot be resolved Hl’?‘

rational linear factors, (case () Art. 22), will now be shown.:
" That equation, whiclr may be expressed in the form

% (9’3! u _p) = 0, I gy
may have one or more of the following properties.
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((;} It may be solvable for y.
1 (6) It may be solvable for z.
"The case wheve it is solvable for p» has been considered in
thé preceding seetion.
<'(e) It either may not contain z, or it may not cont.un ., \‘
\(f:’) It may be homogeneous in 2 and . N
N/
,\e) It may be of the Hrst degree in x and #.

& !

f24 Equatlcns solvable for v When the condlt{:.n (a,) holds,

-f’;("; #y 0} =0 eun be pui in the form

% y=F@p). N

Differentiation with respect to o gived\

ds v/
})#‘lﬁ(-"f’ B .df:)

which is an eguation in w&f@h’i&ﬂlt&f LR p, from this 1t
may be poassible to dedu(, e aualation .

\l,fx {(x, p, €)= 0
The e in)imi-wr\flﬁ‘ “p bebween the latter and the original
equation gives Arelasion involving 2. w, and ¢, which is the
solution qumI‘nd' .
When thé' ehmmatwn of p between these equations is nof .

easily prach mblp the values of @ and y in terms of p a8 a

3T>Dx. L Solve 2 — yp = apt.

o g

pdlau\\&tel can he found, and these together will constltute the
sohmon

Uere =2z ?—2{2.
Ditferentiating and clearing of fractions,
2 - N E£: 1 — w7,
) . fap? | x) ir »{ .F")
This can be puat in the linear form

dx_ 1 oap T
T Ry R
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Solvi -, P S (¢+asm o).
ving U
Substituting in the value for y above, ~
1
= —ap+ ¢ + asin—1p). \

Y » V1~ ( 7 \“\
Ex. 2. Solve y =% + atan-lp. . \3
Ex. 3. Solve 4y = 22 4 p2. :Nf"
Ex. 4 Solve xp? —2yp +ax =0, K7, \

N\

25, Equations solvable for 2. Whan condition {b) holis
Fle, 4, p) =0 can be put in the fm;r‘:k;
@ = Fhyyp)-

N\ g

Differentiation with respectfo y gives

T ~¢‘¢@ ®) ‘
T wWWw, dbrauhbi‘aryﬂurg il » dy pa
from which a re{at:on between p and y may poss:bly te
obtained, say, " |
\\ J@ p ¢)=10. ;
Between thi# and the gwen equation p may be eliminated, or:
and y expressed in terms of p as in the last article.

E@,}u Bolve x =y 4 pt,
: \gxs Solve = =y-4 alogp.
T \ Ex. 3. Solve p%w+ 2pz =y
V‘\ "~
Ve 4 26 Equanons that do mot contain ; that do not contain?
N/ ‘When the equation has the form

eyt ey s

‘o

N
) ] Sl »)=0,
and this is solvahle for p; it will give

de_ qS(y),

e . da:
which is integrable,
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Tf it is solvable for i, ibgyilk give
y=F(p),
which is the case of Art. 24.

s \

‘When the equation is of the form y s..\ \
. ¢NSY.
Jlep)=0, ° \\ ’
and this is solvable for p, it will give .. e PR N\
. dy ' \‘
== 0
which is immediately integrable, ) x’,\\"'
R

Tf it is solvable for @, it will give s

o= F(&J),

rhich is the case of At 20 ,.j'a ' _
wwyidbraulibrary org.in _
1t is to be noficed thab I eguations having either of the 1

properties (¢} Ast, 23 an not solvable for p, on solving for
x or y the differentiatigu is made with respect to the absgent
variable. \\

By dlfferentlatmg in cases (m), (b, (e), there is a chance of
obtaining a differential equation, by means of which anothey
relation m‘a.y he found between p and  or y in addition to the
origi l}elahon These two relations will then serve either .
for 4he elimination of p, or’ for the expression of % and ¥ in
terms of p.. .

\; “ Bx. L Solvey-,‘a'p.-t- .
+Ex. 8. Solvex(l +ps)'— Lo

Fx. 3. Solve =a2(l+ g2).
Ex. 4, 'Solve ¥ = a2(1 4 p®).
-",’L 27 Equatlons homogeneous in o anday When the equatxon 18
“ homegeneous in x a.nd # 1t can be put u the form

: (dy y _
P x)ﬁo.
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N E
(Ca. I

. ) d '
It may be possible to solve this for ng’ and then to prow

as in Art. 9; or to solve it for g, and obtain

y = af {p), A
which comes under case () Art. 25. A
Procesding as in Art. 24, differentiate with respech toa,

pﬁf(?})+wf’(p)%i '

whence @=IQ~)~@: .”‘,\i
x  p—f(p)

where the variables are separated. AN

4

Ex. 1. Solve p2 +ayp — o¥p2=0. .\

\ 3

Ex. 2. Solve y = yp? + 2 pz. N\

> 4

28. Equations of ihe ﬁrst‘dé'gree in x and y. \(Iairaut’s equatin.
When the condition (¢f0Wrt. 23, holds, the equation, ben
solvable Farvad WA FRAEY AW &1L, comes under cases (a) and i
congidered in Artg('24, 25, However, there is one partiels
form of these"gqﬁ‘ations of the first degree in x and y i
18 of speeial ih{pc'irtance, namely,

¥ = pe + f(p)

which i§' known as Clairaut's equation.®

piﬁﬁ’e}'entiation with respect o @ gives

p=p+iz+ (L,
& +fr(p) = 05
-
a:b"—-‘ .

* x}lexis Claude Clairaut (I 713-1765)_, celebrated for his resea,rcillesﬂ
ﬁl;! ﬁg\lm_of‘tha ea.rjt.]:l and on the motions of the moomn, was the fir
who had the idea of aiding the integraiion of differentia} equations ]

K qjﬁerent&ating':!lem. He applied it to the eqnation that now bears |
name, and published the method in 1734,
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From tlm lat.tm equcmtmn it fol]ows that. p=¢ and hence
- y=cx+f(¢) '
is the golution.

The squation » + f'(p) = 0 is considered in Art. 84.

Any equation satlsfymg condition (¢} can be put in the form .
¢\

=2f(p) + L p)- 0N

If fi(p)=p,it is in Clairaut’s form. By procee[iiﬁig 28 in
Art. 24 and differentiating with respect to » there 8/ thm_ned

p= ﬂ(p)+ zfi! (p) + A (P)Eda:

: SPINC) RN 5 () Ny AN
dP p—A(p) R ~ACP)
w}nch is linear in 2; and from th]S asre] ation between x and p
may be deduced. PN .
The student should be famﬂlar enough with Clairant’s form
to Te cogmz TR adily. \-.rww dbraulibrary.org.in
Some equations are neduclb]e to this form; Ex. 2 is an .

illustration. - ’\ e
Ex. 1. Solve y= (N ):c TR
Dlﬁemnmat.mg, » =1+p+ (a: + 2 p)

A/ d"‘
.\’,,.‘ - d_x_,}_x___gpi
which l"xhear Solving, '
ON . ) x=2(1—9)+ce—f-';.
anﬂ~hence ’ ¥=2-p+ (14 pleer
On m the guren equa.tlon
3 v

4 CEx. 8. Solve xﬂ(y = px)= jp"
On puttmg :c.? =4, and y = "2, the cquation hecomes

dv
L = “d + (du)
which ig Clairfut’s form.
_ . _ S v= e cBy
and hence - L YR 0‘3.
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L i

L E.x.'ﬂ. 50]\?& g =2p 4+ 8in-p, _\/
Ex. 4. Solve eb*(p - 1)+ gt = 0.
Ex 5 Sulve zy(y -~ px) L o A

5801.]’1!:3 101 T ory m&y e of service in the case of equations of the
dmih p; this is ilustrated in Ex. 6.

Exls Solve §—+ Ay = x% 4+ o2, i '
The solution for ¥ gweay&he equation y==x+ Vi,
which is of the form@liscussed in Art. 24,
E -\Thbs'olntionis . g=2+EE o
¢ — ¢

%‘.ﬂmmhbﬁaﬁmrgam been saids M “this chapter g
. cerning the ‘equation f(z, 3, p) = 0, Qf}]egree higher than thi
first in p, may bé thus summed up )
Elther solve f(z, y, p) =0 fonp, and obtain a solution cor
jponding to each value of Py or,
Aye for y or z, and, by differentiating with respeet to 20
‘@t&m an equation, whence another relation between Py
¢an be found, \Thls new relation, taken in connegtis
“the_origitig \equatl.on, will serve either for the elimin
of p, or for th evaluation of & and yin terms of p; tﬁ

- or\ th& values of  and y will be the solution. ¥

;
¥

. EXAMPLES ON GHAPTER iil,
'w“’”(dy) ‘*29'!fdx+2ys—m9—0 2
] _ Ka .ﬂyp?+(2x—b)p y=0-"
J !r"'i’ y-pr= \/T‘p(xﬂw":’)
T8 (apegi= a(1+p2)(x‘-'+y”)%-'f
..-.(xp_ wr=p—2lps

Ep+l. X

Y
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.' 1’2 (}JJ+rax)2-(y”+nx?)(1+p9) > 16, (p?— . 1 )(p— ) g)__:o_
S18 w1l - pBy=bo - x

;/ﬁ- (e — w){(py + %)= W?p. T, Hv’i-pf‘- . v .
© 18 Pt 2py cotz= 2. S w18 g 2px _f.(sz).‘-” . 3 <
A 19, epp® +p3a2 -2y — Gy = 0. _ " \
iﬁ&’,% P—dop 4+ 8y =0, o.i\"ﬁ
W2 PP = {2 oy + PR (0 6 P — m"y‘*,;‘ﬂv"/'
2. P + mpt = gy + mx). . 86 y— (1 +t ‘”—\5’\

23 &M (p— 1)+ plav = 0.

C R y= px+—\{\’

- 27 !,-' 2p 3, 4
S ) WWW. dK lbral‘y.org in

.. ‘.'
. Y .
A UK 3 )
' O
N\

- v B ‘2};’

. ‘\&

&N\
N\
tf‘\
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(;\)
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", CHAPTER IV.

D ' SINGULAR SOLUTIONS. S

»

30. Referem:es to algebra and geometry. In this explamtlon
of singular solutions,® use will be made of ay féﬁ d{shmtmusg
and principles of algebra and geomeiry; pavticularly of the
disgriminitvidliheubilaaendopf envelopesyin/the other. Art-
cles 81 and 32 will serve to recall some\&f $hem. The student!
is advised to consult a work on the theory of equations and a;
differential caleulus eoncerning thgse points.

3L The discriminant, ’l‘hefdiscrimina,nt of an equation in-

‘Volving a single variable is§he simplest function of the coeff-

.gients in a rational jfegral form, whose vamishing is the

tefndition that the qqu\a.tlon have two equal roots. For me_a
~FhE

ple, the value of ﬁ'}ﬂ ar® +-be+e=01s M, and SO

2a
the. condition. Ahat the equation have equal roots is that &” —4d¢ s

: be e(_lua,i to zero The diseriminant is b" 4ae; the equatwm
4@,.._ 0 will bc called the diser qnmrmt relation.

*}elhmz in 1694 (see footnote, p. 27), Rrook Taylor (1685 -1731), the
chscoverer df the theorcm called by his name, in 1715, and Clairaut (se8
» 'foot.note., D, 36) were the first to detect singular solutions of differential
equations, Claﬂraut Tefers o thesa golutions in a paper published in th 5
Memoivs of the Paris Academsy of Sciences in 1784, Their geomomca
: significance was fist pointed-cut by Lagrange (see footnote, p. 155} 1115
- an article published’in the Memotrs of the Berlin Academy of Sowncﬂs
- in 1774, in which he also showed a wuy of obtaining them.  The the
LAt Dl'es__em'. accepted is that expounded by. Arthur Cayley (1821—189a) i
an le in the Messeng’er af Matkemasws, Yol IL --1‘8:2

N g0
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E. When the equation is quadratie, the discriminant can he

= written immediately ; but when it is sucli that the condition

: for equal roots is not eastly perceived, the diseriminant is found

in the following way. "The given equation being # =0, form

- another equation by differentiating ¥ with respect to the vari-
. able, and eliminate the variable between the twe equations.

 For example, O\

b (2, 0)=0 O

-may be Joocked on as an equalion in ¢, its coefticignts ghen being

functions of m und . The simplest rational functibn af » and

% whose vanishing expresses that the equation}\b(x, ye)=10

has equal roots for ¢, is ealled the ¢ discrimindnt of @, and is

. obtained by eliminating ¢ between the, 3}&{;}@5’1;011

& auﬁﬁhrary,orgfin
& (n y, C) = 0, E;;: = 0.

Thus the ¢ discriminant relatim;)‘épresents the locns, for each
point of which ¢ (a, y, ¢) = 0_lins equal values of ¢.

Similarly, the p discriminfnit of £ (2, y, p) = 0, the differential
eqlﬁatiun corresponding fone (@, ¥, ¢) =0, is obtained by elimi-.
nating p between thfzieqfuations,

d
‘v(‘r'a .%P)=0: d—-‘;:o.

Th‘us the p di§€riminant relation represents the locus, for each
point of which f(, y, p) = 0 has equal values of p. |
'Ig order‘that there may be a ¢ and a p discriminant, the above
eqv:ai" 5 must be of the second degree at least in ¢ and p In
AMyB it was pointed out that these equations are of the samo
\ }i{egree in ¢ and p, and hence, if there is a p discriminant, there’
‘tmlst be a ¢ diseriminant. ' &
" 32 The envelope. If in $(2, %, ¢) =0, ¢ be given all possible
* Yalues, there is obtained & set of curves, infinite in number, of:
the same kind. ‘Suppose that the ¢'s are arranged. in order o
agnitnde, the successive os thus differing by infinitgsi
~Amounts, and that all these curves are drawn. Cury
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sponding to two couse.cutwe values of ¢ are cmlled cousecutwe‘
curves, and their 1ntersect10n 1s calledQ an’ultimate point oj-

intersection. The limiti f these points of intersee.™
tion includes tke envelope of the system of curves. 1t is shown', _

i’ works on the differential ealeulns, that the envelope is party;
of the locus of the equation cbtained by eliminating « hetwepn:

. ) $ (@, y, ¢) =0, }3 . O
a . . . d¢ h 7°%&
and - — =4 P N
i de 03

V)

that is, the snvelope is part of the locus of the'e Jdiseriminant .
relation. This might have-been anticipatedy‘because in the
limi$ the I’s {of, e fiopeantive gonrves petbme equal, and the
¢ diseriminant relation represents the oo of points for which -
d{z, ¥ ¥ ¢) = 0 will have equal values! (}f [

It is also shown in the dﬁemntlal “caleulus, that at any
-point on the envelope, the latfer is touched by some curve of
the system; that is, that the enve10pe and some one of the

curves have the same valne of p at the point.
% A\

' 33. The singﬂa&@l\;ﬁon.- Bupposs thab
: f(x:%p) =0 (12
"is the d.l.ﬁ'erentlal equation, whieh hag
NS v, 0) = - @

for 11:3 solution. It has been seen, in Arts. 4-6, that the system
xof curves which is the locus of f(z, y, p) =0 is the set of
t. curves obtained by giving ¢ all’ possible values in (2). The
%, ¢, p, at each point on the envelope of the system of curves
which is the Tocus of {2), being identical with the 2, ¥, of
some point on one of these enrves, satisfy (1), Therefore the
equation of the . envelope 19 also a solution of that ‘differential
equation. This is called the Jsm% S uimn It is distin

%};&hed ftpm a, paxtmulaa: solutlon, _m that it i 1t is not contamed
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b —— e —

f\.em the general ‘solul.mn that_is, it 15 not derived by giving
"Hie constant in the numml solution a particular value.
The singular sobution may be obtained from the differential

equation directly, without any kaowledge of the general solu-,

tion, For, at the points of ultimate intérsection of consecutive
eurves, the p's for the interseeting eurves become equal,abd
thus the locus of the points where the p's have equalyroots
will include the envelope; that is, the p discrlmunuj: rélation
of (1) containg the cquution of the envelope of the system of
curves represented by (2). In the next article, 1t\1\‘111 be shown
that the p and ¢ diseriminant relations may sometimes repre-
sent other loci besides the envelope: tlnt ;they may contain
other equations besides the smgular Tution. ﬁ]réy aﬁ[—.m

these relations that satisfies the deEerenmal equatlon 13 the
smoular solution.

Ex. L ¥=w -.-‘J -f- g\’]__.l_ (ﬂ) 3
which is in Clairaut's form, has for its solution
*\;_cx-f— avl +f‘3
This, on P‘ltlﬂilaiizatN\ becomes

R

e — o+ Beay + a2 — 12 = 0,
‘and hence the'egtidition for equal roots is
~ > a4t = al

Thlsﬁ\elzmgn satisfies the given equation, and hence is the singular
solufign

iﬁ this example, the general integral represents the system o‘f lines

\. F=cw 4+ av1 + & all of which tonch the cirele 2% 4 y* = o2

P

Ex. 2. Find the genoral and the singular solutions oi:'j:a? +ap—y=0
Ex. 3. Find the general and the singular solutions of dy \/:E = dx vy
Ex. 4. Find the singular ;sohitian of a2p% — Buyp + 24 + =0
Ex. 5. Find the general and the singular solutions of

(1-}-‘3‘?‘;\) (:c+y)(1~—)




v

‘44 . DIFFERENTIAL EQUATIONS. [Cu IV 5

34 Clairﬁﬁ:i:’s equ;ation. In finding the solution of Clairaut’s
form in Art. 28, there appeared the equation

;o 5+ 7'(p) = O, @)

which is as important as the eguatior %’:0, that appeayed

with it. The foregoing shows what part equation (3) plays i
solving Clairayt’s equation. On differentiating y = ga‘a{;—!:'f ().,
with respect Yo #, (8) is obtained. The elimipafion of p
between these two equations gives the p discrimi}'l,aint relation,
which here represents the envelope of the systéni of lines
| s ymetfO O
represents Ry Sh SRISFEL SO S O
-85. Relations, not solutions, that\may appear in the p and ¢ dis-
criminant relations. It has beeh pointed out that the p dis-
criminant relation of f (a:,vy;'j)) = represents the locus, for
‘each*'point of which f@yy, p) = 0 will have equal values of p;
;jand that the e diserimitant relation of ¢ (=, », ¢) =0, the gen-’
e}gﬂ solubion of ﬂQ {ormer equation, represents the locus for
- Gach point of W,h%h G, ¥, £) =0 will have equal values of ¢
It is known also'that each point on the envelope of the system:
FICNROES '_D is & point of ultimate intersection of a pair of
: conseggf_:‘ﬁé curves of that system; and, moreover, that at each,
poirttan the envelope there will be two equal values of p, one’
| ﬁ(},lj éach of the consecofive curves intersecting at the poiutﬁ
oand that, therefore, the singular solution, representing the:
\’envelope, must appear in both the p and the ¢ diseriminanb
relafions.  But the question then arises, may there not be
. othe? -lo__ci_'-.'_ :b'esiQes ‘the envelope, whose points will make
1 S@ 3 p)=0 give equal values of p,or make ¢(z, y, ¢) =0,
giveequal-values of ¢ In other words, while the p and the
¢ digeriminant rglaﬁéﬁs“i‘ﬁpatﬁ both contain the singular solu-

tion, which repi‘ésé_hts __the-envfel_gpe if there he one, may they
- -not each contain something elge? - . .., . '
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© 36. Equation of the tac-locus. At a point satisfying the p
diseriminant relation there are two equal values of p; these
equal p's, however, may belong to two curves of the system
that are not congecutive, but which happen to touch at the
point in question.  Such a point of contact of two non-gonsecus
tive curves is on a loeus called the taclocus of the system of
‘eurves. The equations representing the tac-locus, while \{;Bng
appearing in the p diseriminant relation, will not be contamed
i that of the ¢ diseriminant ; since the touching L‘ulﬁve’s, heing

non-consecutive, will have dlf’felent ¢'s, . '\\
Ex. Exunine {1 + p¥y =72 ¢
Ry BN
Bolving for p, = u ¢* ;'\

¥
www dbraulibrary.org.in

..‘,

. Integrating and rationalizing,
¥ (i +»"32= "”

The general solution, therefore, repre‘z.entq a system of eircles having a
ramus equal to ¥ and their cent.ra&: on the x axis.

1he ¢ diseriminant relation i 1z= M C R
- and that of the p diserimidant is 22(y? — 2) = 0
i $

Thus the loens of‘ﬁe"latt’er is made up of the loci ¥ = + r and of
¥ =0.comted 1w ir,e‘

The equationy g + r, that appear in both the p and the ¢ discriminant
relations, 5atlsf}\the differential equation, and hence form the gingualar
solution; Tty represent the envelope.

Tha equ‘a,tion ¥ = 0, as is apparent on subsiitution, does not satlsfy the
Jdiffer eli}a‘l equatiinn. Through every point on the locus ¥ = 0, two circles
.of the 8ystem can be drawn tonching each other that eqllatlﬂﬂ, there-
fqre, represents the tac-locus.

«/The student is advised to make a figure, showing the set of circlos,
then envelope, and the taclocus, as it will help him to nnderstand this
and the preceding articles. T

37. Equation of the nodal locus. The ¢ discriminant relatidh, -
* like that of the p diseriminant, may contain an equation having
2 locus, the w, 7, p, of whose points will not satlsfy the dif
entmf Bquation.

P
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The general solution ¢ (w, y, ¢) =0 may represent a set of "
curves each of which has a double poinf. Changing the ¢
“ changes the position of the curve, but not its character, These

Fia.

ourves bem@aum&‘ﬂlﬁ%le@fndouﬁie points will lie on 2 _
curve which is called the nodal locels,Y In the limit two con-

getutive curves of the system will-have their nodes iv coin-
cidence upon the nodal locus,\The node is thus one of the -
ultimate points of mterswhon of congecutive curves; and,
therefore, the equation of ¥his locus must appear in the ¢ dis-
. criminant relation, B{lt in Tig. 1, where A, B, -, are the
~curves and L iy the nodal iocus, at any point the p for the
- nodal loeus L 1531 erent from the p's of the particular curve
| that’ passes thx;ongh the point; and hende the &, y, p, belong-
| ing to L at~t‘ha pomt, wﬂl not satlsfv the differential equation.

N

g, 2.

And, in general, the , y, p; at points on the nodal locus \nll
not satisfy the' differential equation; for the case would be j
exceptional where the p at any point on the nodal locus would
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coincide with a p for a curve of the general solution passing
- throngh that point; where, in other words, the nodal locus
would also be an envelope, as in Fig. 2, in which 4, B, ..., L,

. have the same signification as in Fig. 1,
v BX, ap? —(x — a)® = 0 has for its general solution
. y+c=-§x€3—2ax}3; e\
that is, Wt e)¥ =x(s —8a)i .\ ’
The p diseriminant relation is wlec —ayr=0,

snd that of the ¢ diseriminant, »(r — 3a)2 =10 ?
af;/

LThe rélation @ = ) zatisfies the differential equat]
singular solution and represents the enve-
lope Iocus. 5
The reiation © — ¢ = 0, which appears Joe
only in the p discrimi nant, does not satisty M Nl
the differential equation ; it represents the ™ 4
tae-locus, And ¢ — 8¢ =0, which is.’fm
s the e diseriminant, does not satigfydthe
_ original equation ; it represents thé nodal
locas, ~n T
Fignre 3 shows some of the curves of
the system, the envelope(the tac, and the
nodal loci, \\ ’

N

38. Equatipfi’ol the cuspidal locus.
The genegal, folution ¢ (e, y, ¢) =0 /\/
14y repregont a set of eurves each i

of th\ﬁh“h_as a cusp. These curves ¢ :

. belig\supposed drawn, the eusps

. M lie on 2 curve called the cuspidal

sﬂf’_.cus- It is evident that in the o
limit two consecutive curves of the system will have their
ensps coincident upon the cuspidal locus, the cusps thus being .
mong the ultimate points of intersection; and hence the euspi-
dal locus will appear in the locus of the ¢ diseriminant relation.
MUI‘GOVQ,X, the p's at the cusps of consecutive eurves will _evi~
dently be ¢qual; and therefore the cuspidal locus will appear . .

Fre. 3.
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in the locus of the p discriminant relation.
locus, it will not, in general, be the envelope.

x

o Bx. 1. The differential equation
#+2p—y=0
has for its general solution
(223 4+ Bay + )2 — 4= + )P = 0.
The p diseriminant relation is
a4 y=10,
and the ¢ diseriminant relation is
(o 4 )3 =

" Equation (1) is not satisfied by (3}, and Qe;}c there is no singalar ;
selution ; 2% & ¥ Thinaigwsirpeseg.in ""x :

Y

Ex. 2. The equation Sop = ‘3: ¥ Y
* has for its general solution ay?—— (a: ~- P 4 X
the p discriminant relation is &3 y o, g
and the ¢ discriminant relagfon ;s ¥ =0 o _ Fig. 4. '

The equation g = 0, g.a‘ihﬁes ihe differential equatlon, ‘and therefore s s

the singular solut.lrt\\n is also the equation of the cusp locus. Digure i
4 illustrates thighexample. This is one of the very . exceptional ¢ases.
where the cuspy loeus comcuies with the envelope,

NG
39 Summary When the loci disenssed abovg exist, then
€ p discriminant relation will appear the equations of thﬁj
pe loeus, of the cuspulal Iocus, and of the tacfocus; aﬂag
*mthe ¢ discriminant equation will appear the equations of theg

K > Jenvelope locus, of the cuspidal locus, and of the nodal locus. *

* Bee BEdwards, Differential Caloulus, Avts, 564-266; Johnson, Differ-

4 ential Fguations, Arts, 45-b4; Forsyth, Differential Equadwﬂ& Arts.
4+ 23-80; an article by Cayley, © Gn the theory of the singular solutions of
‘dlﬁerentlal equations of the first ordesr ™ (Mfssenger of Mathematics, ¥ 0’

11 [1872], pp. 6-12); an avticle by J. W. L. Glaisher, « Examples 1105

trative of Cayley’s theory of singular solutions™ (Messenge Mﬂma’
matics, Vol. XIT, [1882], Pp. 1~14) S ¢ ! ?f
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“The p discriminunt relation contains the equations of the envelope,

" cuspidal ard tac loci, vuee, onee, and twice Tespeetively ; and the ¢ dis-

criminant relation condiins the eyuations of the envelope, cuspidal and
nodal loci, onge, threw ilmes. aud twice respectively.®

<

1LEXAMPLES ON CHAPTER IV.

? o
2\

Solve and find the singular solutions of the following cquations 27N
N

o lozpt = 2yp A s = S 4t Bpry o pR(a? 71}‘.: M,
R xR aten 4ot 2o 0L 4. y=1xp + \/b““:at"f_,if‘:
§oy=up — A "‘.\
6. Examine Lixs, 2, 4, 20, 96, Chap. 1L, for siqe{l}r solutions.
7. Solve 432 = O, and exawine for Hingulg,‘\:s’s)lution.
8 Investigate for singular solution N w.dbraulibrary.org.in

ffm — 1) (0 — 2ypt — (322 Bz +2)2 =0,
9. Bolve and examine for ;~si11g111.m‘:‘@’dl’uticn (8p° —27)x =12 p%.
© 10 PNt — af) — 2 pay 4 B 0,

W (pz— ) (2 — pir) = 2.8
- . - \
*This iy proved infdR rticle by M. J. M. Hill, **On the ¢ and p dis-

B eriminant of ordinady i\lﬁegmhle differential equations of the first order ™

{Proc. Long. MaphMoc., Vol XTX. [1888], pp. 561-589). This article
- #pplemerits Cayléy's, mentioned above.

Pl‘ﬂffzssnr,t;ﬁhrystal has shown that the p discriminant locts is in gen-
#ral a cuspidaocus for the family of integral curves. ( Nature, Vol LIV,
1895, &\ 1)

—_— N
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> CHAPTER V. O\
7NN 7
APPLICATIONS TO GEOMETRY, MECHANIGS,

- AND PHYSICS. N

40, The student will remember thaf, affm}\ieducing the
methods of solving various kinds of algehpaic equations and
working through lists of these equatip,m}'ﬁe made practical
applications, of dﬁﬁkﬁﬂﬁw%‘@m glill “lug acguired, in 1'3118
solution of problems. In the proetsy’of finding the solution
of one of these problems, there were three steps: first, forming
the equations that expressed J:}%éfelations existing between the
quantities considered in ghéproblem ; second, solving these
equations; and third, inté’m}eting the algebraie solution.

In the case of difforéntial equations, the same proceduare
will be followed.; The three preceding chapters have shown
methods of sql}h\lg differential equations of the first order.
This ehapter\will be concerned with practical problems, the
solution gf Which will require the use of these methods. The
problems Wwill be chosen for the most part from geometry and
Hl?e\h@}i\lbs; and it is presupposed that the student possesses
o Wueh knowledge of these subjects as ean be acquired from

..\'f slementary texthbooks on the differential caleulus and e

\./ chanies.

/ Asp in the case of algebraic problems, there are three steps
in qbta,ining the solution of the problems now to be congidered:

First, forming the differential equations that express bhe
relations existing between the variables involved.

SBecond, finding the solution of these equations.

Third, interpreting this sclution.
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There will be ouly 1wo variables tnvolved in each of these
problems, and henee hut o single equation will be required.
The choice of exminples for this chapter is restricted, hecause

- differential equations of the first order unly have so far been
treafed. ’

41. Geometrical problems. The student should 1-eview’t.\1§&
articles in the differentisul enlenlns that deal with curvesih i
particular, those arlicles that treat of the tangent andjna‘rmal,
their direetions, lengths, and projections, and the &r?-ici‘és ihat
diseuss enrvature and the radius of curvatuve, {Fhis review
will be of great service in helping Lim to expless the data of
‘the problem in the forw of an equation, andto interpret the
solution of this equation. The charactex of the geometrical
problems and the method of their seMBiddhsaulibraeyong. ive
a3 follows. A curve will be described by some property be-
longing to it, and from this its e(}y.ﬁ:t;i{m will have to be deduced.
Thig is like what {s done in @halytic geometry, but heve the
statement of the property wall* take the form of a differential
equation; the solution of this differential equation will be the
raquired equation of j{]’ie\curve.

\

42. Geometricgl data. The following list of some of the
principal geometrical deductions of the differential calenlus is
given for veférence. It will he of serviee in forming the dif-
ferentia@“n{ciﬁn,tions which express the conditions stated in the
Problgms,or, in other words, give the properties belonging o
the tarves whose equations are required.
¢ QSUPPOSE thas the equation of a eurve, rectangular co-ordinates

“\Welng chosen, is
J : y =f(), or F{z, =0,
and that (», %) is any point on this curve. Then % is the

slope of the tangent at the point (z, ¢), i.e. the tangent of tge _
angle that the tangent line there makes with the w-axis; ~ a—;

is the slope of the normal; the equation of the tangent at (% ¥),



R
h
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X, Y, being the current co-ordinates, is ¥ —y = d?’f (X —a); and
the equation of the normal is ¥ — y == — df_a* (X #); the inter.
. if:

cept of the tangent on the axis of x is = — i r?_ the intereept
of the tangent on the axis of y s y — o - dy

da’
tangent, that is, the part of the tangent between the pomt

and the zaxis, is Y41 +(§'ﬂ) i the length of t-be?qlm'mal
iy
J LY e
ig yyf1 +(§1) ; the length of the subtangen’ﬁ;}s W E—y; the

; the length of the

length of the subnormal is y g_x; the chﬁeybntml of the length

AUATATY ary.org.i & |
of the are is 1+ — dv,:, or 1+( ) dz; the differential -

of the area is ¥ du or wdy. o

Again, let the equation of ',t-ﬁbi’curve in polar co-ordinates be
f(*r,wﬁ)-:_-.ﬁ, or r = F(§),

and (r, 6) be any poin”t,\m the curve. Then the tangent of the
angle betwesn th\\adms veetor and the part of the tangent

todtgle curve 'E.tt e, §) drawn back towards the initial line, i
e d_r. If 4 s ¥he vectorial angle, i the angle between the radius

vector ,@ﬁ‘ the tangent at (»; 6), and ¢ the augle that this

tzmg@t makes with the initial line, ¢ =1 + ¢; the length of

t.he polar subtangent is 2 dG’ the length of the polar sub-
dr )

dr

"norma.l is a0 ; the differential of the length of the arve is

Iy z
. +Tg(d_f') ar; or (d;) +r*df; if p denote the length of

the perpendicular from the pole upon the tangent,* then

* Williamson, Diﬁerenmal Caloulus, Art, 183; Edwards, Differenticl

Caleulus for Beginners, Att, 95.
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ik t <:‘r'6 !
that 1s, l_,: w4 i , where « _1
¥ tid T
43, Examples. A
-2 D

Ex. 1. Determine the curve whose sublangent is n times the abagissa
of the point of contact ; aud {ind the particular eurve which ‘passes

AN

throngh the point, (2, 33, &
Let (x, ¥) be any point upon the curve. The subtangent, isy? There-
~ Y

fnre, the gomdition that must be satistied at any pginhwf the required
carve, in other worids, the given property of the (ere, is expressed by
the equation IAY

(Z_J‘- _ ..\ W
¥ dy e Sy w.dbraulibrary .org.in

Integratiou gives »log y = log ez, whc—;:wé,"
7 A
This represents a family of cuiwgs, each of which passes through the
origin. For the particnlar carve that passes through (2, 8), ¢ must be i—ns
and the equation is
£ 3 e — S
, 2\ 2y =38
Wh a ight li i
e » =1, thesreqitirad curve is any one of the straight lines which
Bass through the, oririn; the equation of the particular line through
2 8)is A/ .
0\ - 2y =3x.
When %9, the curves having the given property are the parabolas
“]'lh%e %ﬁfces are at the origin, and whose axes coincide with the z-axis;
W e‘Pf}'}‘tlcular parabola thraugh (2, 3) has the equation
O 2y =Dz,
\¥
} When =3, the required curve is any one of the system of semi-
talical parabolas that have their versices at the origin and their axes
fomciding with the axis of g,
What eurves have the given property when n=3? Whenn=4?
fr EX. 2. Find the curve in which the perpendicular upon the tangent
; ™0 the foot of the ordinate of the point of contact is constant and equal
®®; and determing the constant of integration in such a mannar. that

the eurve shal) oyt the axis of y at right angles. .
. oL



(2, ) is-
Yoy=(x ),

the length of the perpendicular from {x, 0}, the foot of the ordinafe ¢
—y . . R
upon the tangent is _J (dy)z N/
14(=2 ¢
i \.
~Therefore, the given property of the curve is expressed b\ thegquatmn

ady

1) ;y_:a; from this, (2) Vﬁ“ »:ie d.r,

dy)‘*
\{1 + (t_b:

3" p

integration gives * eogh - 1y =Lt 7 \\~

www.dbraulibrary. 01(; 0N

h.,).,.

It is also required that there be folisd the particnlar one of these
- carves that cut® the g-axis at nghi;r abgles. This means thai for this

curve, g---— 0 when z =0. Vow ;ilfferenha.tlon of (3) gives
¥
Lamn, 1 2.,
A sinh (a + L) ;
therefore ¢ = 0 ; an{l{éne’e

N\

whenee (3} :f:'.: coah

>

e

©
=cosh
. O @
the equation Qf"Lh‘é eatenary,

¥x, 3. 'Qﬂmrmme the curve in which the subtangent is » times the
subnorﬂ\ai.

m Determino the curve in which the length of the arc meagsared

_ fmm a fixed point 4 to any point P is proportional to the square root of
,'\t.he abscissa of P,
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Let (, ¥) be any point on the curve. ‘The equation of tle tangent at
Ex. 5. Find the curve in which the polar subnormal is proportional 80
the sine of the vectorial angle.
Ex. 6. Find the curve in which the 1
the length of the rading vector.

pelar subtangent is proportional 0 .

*Bee McMahon, Hyperbolic lftmoawns {Merriman and Woodward, ;

Highes Mathematics, Chap. TV s ATts. 14, 16, 26, 39 ; Edwards, Iur,egrf*‘
Caleyluz for ,Begmners, Artg 98-44
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44. Problems relatmg te trajectories. An important .grouy
of geometrical problens is that which deals with trajeetories.
A frajectory of a fmnily of ecurves is a line that cuts all the
membérs of the Jawmily aceording to a given law; for example,
the line which cuts all the curves of the family at points equi-{
digtant from the w-axis, the distance being measured along the
carves of he family. Another example of a trajectory i the
line that cuts the cnrves of the family at a constantlangle,
When the angle is a right angle, the trajectories @re ‘called
orthogonal trajectories; when it is other than a i‘ight angle,
the trajectories arc said to be oblique. Only $ligse two classes
of trajectories will liere be discussed.

N

45. Trajectories, rectangular co—ordimablﬂw fethat. gin

T g @) = 0NV 1
13 the equation of the given byqtmn of curves, ¢ being the
arbitrary parameter; and that*fms the angle at which the tra-
jectories are to cut the gven eurves., The elimination of a
from (1) gives an equatign of the form

\ }'y ”

\\ (’E, y d’c) 0, (2

the differential Egnation of the family of curves.

Kow through any point (z, ¥) there pass a curve of the given
System and\one of the trajectories, cntting each other at an
angle & "\If #; iy the slope of the tangent to the trajectory at
this potnt, then

R o) da: 6))

. i . —
} H:

By definition s is —t” for the trajectory; hence the differ-
ential equation of the q_) stem of trajectories is obtained by
Substituting this value of m for % in (2); this gives
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Y

[ :g— fan w | i
Ty i v =0, (4) !

Y L
1+ = tar e J|

for the differential equation of the system of trajectories; and

the solution of this is the integral equation. oA
If « is a right angle, OO
_ g N\
== dy \ o & Q

? ¢ {.'

and hence the differential equation of the syste'ﬁg\){' orthogonal
trajectories is obtained by substituting — & £or Y in (2); this

gives ) A do
www,dbraulibl'zry,org,i&a: ()«\ v &
3 ¥y — — I o

B
Integration will give the eciu@fibn in the ordinary form.

N <
LN

46. Orthogonal trajectorids; polar co-ordinates. Suppose that :

N T80 =0 o
is the polar equafion of the given curve, and that
@ e

is the-eotresponding differential equation, obtained by eliminatr
ing e’arbitrary constant &, The tangent of the angle hetween
,ﬂ"‘f” tadius vector and the tangent to a curve of the given sy#
{_ytem at any point {r, &) is %‘i If m is the tangent of the angle
" between this radius veetor and the tangent to the trajectory
through that point,

o T df

since the tangents of the curve and its trajectory are at vight
augles to each other. Hence the differential equation of the
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required trajectory is obtained by substituting ——l-dT or T'gf,
»
or, what comes to the same thing, — ?-?;6 for gf in (2); this
gives ; d
od a2
b (-r, 8, —o* £> =10 ES)

' . . - A,
as the differential equation of the required system of trajecte-
Ties. y W
&N

47. Examples. AN 4

Fx. 1. Find t}w Equdtlon of the eurve which cutg a.t‘& Eonsta,nt angle
whose tangent iz = all the circles touching a glven stralght line at a
given point.

Take the given polnt for the origin, the gy p\lme for the y-axis, and
the perpendicular to it at the point for Ukbg¥eietbralebyiaey opgein of
tireles then consists of Lhe circles whick pass *fhrough the origin and have
their centres on the « -axis; its qul"ltl@ll is

¥t ek A?ax— (1

& being the variable parameter® The climination of ¢ gives the differen-
tial equation of the system ghcircles ; namely,

,imt\ dy _y*—a? . @

\\"” frics 2 xy
The differentigeguation of the system of trajectories is obtained by
trevas g g .
substituting ;Qr\;—g in equation (2) the expression

xt\ w dy m
A T
\‘\\’“ 1-— E d_J
\ n dr

'\a;nj‘;l't.his gives on reduetion

 {
\

N

:

-/ (na? — ny? + 2omay)de + (my? — ma? + 2nay)dy = 0. (3
The integration of this homogeneous equation gives
W+ y? = 2e(my + nx), < (4}

¢ being the constant of integration ; this represents another system of
tircles,

The trajectory is orthogonal if » =0 ; equation (4) then becomes

2 + 32 = o,



3
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which represents the orthogonal system of circles; these circles pass
through the origin and have their centres on the y-axis.
Ex. 2. Find the orthogonal trajectorics of the system of carves
ygin nd = a*,
bifferentiation eliminates the parameter «, and gives

2 N
;ﬁ—ﬁ—zmtﬂﬂf() N,

'\
Ny
the differential equation of the system. &N
Lz differential equation of the system of trajectories iy’ @btamcd by
substituting — rize for g; this gives ..~\‘

— 2 tnf = 0; \
¥ W —I—rco # ) \\
separating the spripbless i egvesioggaid Slmp.lrtﬁ“gs

rﬂcoseaﬂ_r;“'

¢ being an arbitrary constant; this i i.he equation of the system of
otthogonal curves, o\

Ex. 8. Find the ort.hogonail t.raaectones of a series of parabolas whose
equation is 42 = 4 qu,

P4\

Bx, 4 TFind the: aurtlxogo\a.l irajectories of the series of hypocy cloida
9:3 ¥ ys = aJ '\\

Ex. 5. Find the fquation of the system of orthogonal trajectories of &
series of conioch.‘l ‘and coaxial parabolas ¢ = .- _2¢

. 1+ eos 6
Ex. &\Find the orthogonal trajectories of the series of curves.

Fe ) re=a¢+ainodd

“Ex. 7. Given the set of lines y — cx, ¢ being arbitrary, Kud all the

;'\\urvea that oui these lines at a constant angle ¢

48. Mechanical and physical proble:’?iS. The student shonld
read in some text-book on mechanics the articles in which the
elementary principles and formuls relating to force and motion
are enuneiated and dednced. The truth of the following defi-
uitions and formule will be apparent to cne who understands
the first principles of the ealeulns and the priuciples of med
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chanics as set torth in P]emenbary works that do not employ
the caleulus.

If 5 dénotes the length of the path described by a particle
moving in a straight line for any period of time;

¢, the time of motion, usurlly estimated in seconds; and
v, the velocity of the moving particle at any paltmﬂa}
e

point or instant; then will W
s o
praaly and .“'( N
2 i'"

d' . .M\ -
5: the acceleration of the moving pastiels at any point
of its path. Y

Ex. 1. A body falls from rest; asgllmmwﬁdbrhuh«tmycmgi ithe
alr is proportional to the square of the velgeity; find

/
& N

(@) its velocity at any instant; XY
(L) the distance through w hlch 1§has fallen.

Iz this case the equation for Lkaﬁcelemtmn is
I g &
v _ GéeNgd?, or, putt.mg = for K
ot M\\ g
e
9'%&1‘\:” ¥ — nht,
whenee 2 i) —=
2 nfa?
Titacr \“' WY nw
Tlte:lt@.{’lzg, tani--1 ria nE + ¢ ; whence, e tanh{nt -+ ¢).

But. ’\”;

§~\Tlxeref0re p=% 9 tanhnt;
\J at n

}
/ Whekce, on integration,

¢ =0, since v =0 when ¢ = 0,

P4 e= f:? log cosh xi.
But s=0whent=9, -.oc=0;

therefore s = % log cosh nt,
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Ex. 2. Find the distance passed over in time ¢ by w particle whose
aceeleration is constant, determining the comstlants of integralion so that
at the time ¢ = 0, g is the veloeity and s the distance of (he particle from
the point from which distance is measured.

Ex. 3. The velocity possessed by a body after falling vertically from, .
rest through a distance s is found to be V2 gs. Find the Leight through
which it has fallen in terms of the time. AN

. ¢ '\
EXAMPLES ON CHAPTER V. K ~

. 1. Determine the curve in which the length of the 51 :{m nial i pro-
portional to the square of the ordinate.

2. Determine the curve in which the part of the Lanwmn intercepted
by the axes is a constant ¢. [Hint: Find the smg@iar solutiom |

8. Determinwtthbrawilinaslidr ghin lengtk of the subnormal is pro-
portional to the aquare of tho abscissa. :

4, ¥Find the equation of the curve tm, wmch a differential of the arc is
& times the differential of the angle mad‘e by its tangent with the 2-axis,
multiplied by the cosine of this anvle ‘and determine the conslant of inte-

gration so that the curve touched uhe z-axis at the point from which-the
are is measured, R

N

5. Find the equa.tlon bithe crve where the length of the perpendict-
Iar from the pole umhe tangent is constant and equal to

8. Find the Bqua.tlon of the gystem of curves that make an anwle whose

tangent ig Pra ,thh tha serles of pavallel lines x cosa 4+ ysin a = p, p being
the ma.blb\para.meter

find the orihogonal trajectarles of the system of parabolas y = az™

ﬁ\ lnd. the orthegonal trajectories of the system of circles tonching
d g:wen straight line at & given poing.

N
N/ 9. Find the orthogonal trajectories of =

+
/' arbitrary.

- —}-_X =1, where % 18
10. Find the orthogonal trajectories of the serics of hyperbolas ay = &~
i1 Determine the orthogonal trajectories of the system of curves

™ = g% 0oy nf ; therefrom find the orthogonal trajectories of the scries
of lemniscata +? = afeos2g,

£

. 2
; 12. Find the orthogonal trajectories of (r + f—) cos # = a, a being the
. parameter. ¥ ' E
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18. Find the orthogonal tenjectories of the series of logarlthmm spirals
¢ = b, where @ varies,

14. Deterinine the curve whose tangent cits off from the co-ordinate
axes interceptas whose sum iy constant,

18, The porpendicuiars from the vrigin upon the tangents of a curve
are of constant length . Fiwd the cquation of the curve, O\

¢\

16, Fiod the copation of the carve in which the perpendicular frow tie
origin upon the tangent Is equal Lo the abseissa of the point of contact

17, Find the eqoation of a surve such that the pmjectlon Of *its ord1-
nate upoi the normal is equal to the abseissa. m\‘

18. Find the eouation of the enrve in which, if anypoint 7 be taken,
the yerpendicular lot full from the foot of its ordimate upon its radius
veetor shall cut the y-axis where the latter is dqg\by the tangent to the
turve at 2 W ,dbraulibrary.org_‘m

18, Yind tlie curve in which the augle’he'tween the radins vector and
the tangent is n times the vectorial, fmglc What is the curve when
B=l? When 12 v

2. Delermine the curve in u.lneh the normal makes equal angles with
the rading vector and the inittal line.

2L Find the curve tlm\cnwth of whose arc measured from a given
Point is & mean prop b\onal between the ordinate and twice the abscissa.

22, Find the eghation of the enrve in which the perpendicular from
the pole upen the tangent at any point is & times the radius vector of the
Ioint, O\

N 1 2 .
23, It (-E — ]) find the equation of the eurve, r being

a1l -
the la«dlha“\reci or of any point of the eurve, and p the perpendicular from
the pole apon the tangent ag that point.
\2’1 Tind the orthogonal tra jectories of the cardioids r = a{l — cos #).
M
4 25. Show that the system of confoeal and coaxial parabolas y2=4a(z @)
is ﬁelf.orthogonal
26. Show that a system of confocal conics is self-orthogonal.
27, Find the curve such that the rectangle under the perpendmula.rs .
from two fixed Ppoints on the normals he constant.

28. Find the ctrve in which the prodaet of the perpendiculars drawn
from twy fixed points to any tangent is constant.
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28. The product of two ordinates drawn from two fixed puints on the
2-axis to the tangent of & curve is constant and equal tw %  Yind the
equation of the curve.

80. Determine the curve in which the area enclosed belween the lao-
gont and the co-ordinate axes is equal to ¥

31. Find a curve such that the area included between a tingent, i,

“x-axis, and two perpendiculars upon the tangent from two fixed pumt.s o

the z-axis is constant and equal to £2, M

32, The parabola §* = 4 ax rolls npon a straight line, ])egeri);ine the
curve traced by the focus. 9.

33 Determine the curve in which & = ax®. m\\

34. The equation of electromotive forees for an electrm civenit conlain.’
ing resistance and seli-induetion iz

www.dbraulibriiry Brg-uﬁth ‘\ :'

v/

where E is the electromotive force given to tlle cirewit, 2 the reslstance,
and L the coefficient of induetion., Find: the current £ : {«} when &' = f(t});
(&) when £=0; {¢) when E= ar.Qonsnnt. () when K is a simple
harmonic {unchon of the 'mne, :E,,, sin wl, where X, is the maxjnmm
valne of the impressed elecironintive force, and w is 2= tinwea the fre-
quency of alternation; (e)when E = F sin wi -+ Ly sin (bat 4 8.

6. The equation, of &lebtromotive forees in terms of the current 7, for
an electric eircuit ha\.&i ¢ a Tesistance K, and having in series with thal
resistance a condénser of capacity €, is E = Bi + jf'-dt‘ which reduces ot
dlﬁarentlatlrm Q() the form ¢

di Li_laE
~.\ REC La

\Y
B velnfithe slectromotive foroe Find the current i: (¢) when B =f{);

(b)s%hen E=0; (¢} when E = a constant; (d) when E = K, sin wh

A36. Given that the equation of electromotive forces in the circuit of
& last example, in terms of the charge q, i

E= R g

7

find ¢: (@) when £ =7(t); (5) when E=0; (c) when E = a constant;
(d) when E <= K., sin wt.

3%. The acceleration of g moving particle being proportional to the
C;le of the velocity and negative, find the distance passed over in timé &
the iitial velocity being v, and the distance being measured from e
Position of the particle at the time ¢ — 0, E
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CITAPTER VI
28N
LINEAR EQUATIONS WITH CONSTANT
COEFFICIENTS. A

40, Linear equations defined. The complementary fufiction, the
particular integral, the complete integral. Kquatiéns of an order
higher than il fivst have now to be considered\® This chapter
aad the next will deal with a single elass@©f ‘these equations;
namely, linear differential equations. Pehibeavhidbiapeniain
variable and its derivagives appear UIlI)- in the first degree and
are not multiplied together, theind coefficients all being con-
&tants ar functions of . The "enem] form of the eguation is
+RY ,"Jr;Pr:_,,_{Jr +Py=X, N

o\
where X and the c’xfﬁments Py, Py v, P, arve constants or
functions of . Ph the derivative of highest order, g‘?:, has a

eoefficient othen than unity, the members of the equation can
be. dmded b3 “thig coefficient, and then the equation will be in.
the e forg 'The linear equation of the first order has been
treate Alt 20.

Ifwill first be shown that the complete selution of (1) con-
tai‘ns, as part of itgelf, the complete solution of :

) 3

™y
et

i"?; d"‘ i ' o
jro—s) } '
d ‘U""}' 1 dm“_]_+ + Wy = ( ( )
It y=y, be an integral of (2), then, as will be seen om
substitution in (2), y-= ey, ¢ being an arbitrary constant, is -
also an integral; similarly if = ¥y ¥ = ¥ ) ¥ = Y be inte-
Brals of (2), then y = ey, v+ Y = Gl WheTe oy« G are arbx
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trary constants, are all integrals. Moreover, substitution will
show that :

Y=oy +cdat+ o+ G ) 1
is an integral. If y, ¥, -, 3, are linearly independent,* (3)__i‘s§‘r
the complete integral of (2), since it contains n arbitrary ted,

stants and (2) is of order «. ¢
If 4 == » e a sclution of (1), then O
Y= Y+ ¥y ) - . ("}c‘
where Y= Cf1 + Calfn + Colfs .."\'\ 4

is also a solntion of (1}; for the substitutiodof Y for y in the
first member of (1) gives zero, and that of sfor y, by hiypothesis,
gives X. ‘Aswtlibranllibieny($rgontaing & arhitrary constants, .
it is the complete solution of equation (1). The put ¥ iﬂ:!
called the complementory funetion p aud the part v is called the
partioular integralt “The  gendral or complete solution, is illgj
. sum'of the complementary {ipetion and the particular integral

50. The linear equatith, with constant coefiicients and gecond
member zero. The equation

* ' E@‘ d Y I
: ’dF‘J‘-P‘dF:’; e+ Py =10, )

where t]:}e; ‘edefficients Py P, .., P,, are constants, will first be
treated £ :

(_hs{_ﬁie substitution of g for y, the first member of this

gqﬁﬁlo’n becomes (m* - Pyr®~* + .- 4 P,)e™; and this will be
vequal to zero if

NP w4+ P 4 oen 4 P = 0. (@)

* Bee Note F for the eritérion of the linear independence of the inte
- grals gz, ey ey Yne

.t 'This use of the term particuler integrel is to be distingnished from
- that indicated in Att. 4. L

R Tge method of solving the linear differential oquation with constant

cdgﬂiq%z_t_ + shown In this article, is due to Leonhdrd Tuler (1707-1783)
ons he moet digtingnished mathematicians of the sighteenth century.
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e
 This may lie ealleid the awrilivry eguation, Therefore, if m
have a value, sy g, that satisties (Z), 4 = ™ is an integral
of (L) ; and 1 the » roots of (Z) e any, vy - m,, the complete
+solution of (1} t5

R i T e S (3) 4
i iy . £\ ¢
Ex: 1. Solve S B Loaby =0 2 AN
[t e .\
Here equation () - wE G - D=0 "l
o . . ™
solving fov m, mo=b, — 4 N 3

Ifence the general solution of the cquation is ¥ = {:le"’ii;\ﬁﬁe‘g".
Ez.2 It ij'{ - w1 show thad

AY;
¥ = ient Loppent = A posh mat .E’?'\glbﬁ' witibrary org.in
3

Ex. 3. Salve 270 P 12x=0. O
elg? et L ¥
. &
Ex. 4. Solve 9 % +18 Lj* — 16559,
st NN

51, Case of the auxiliary equation having equal roots. When™
w0 roots of {2) Art. 50\dre equal, say m, and m, selution (3)
becomes (\J .

O
U =N € e e, e oo

But, since e ;i\@m equivalent to only a single constant, this

- &olution n;iQ..Jiave {n -~ 1) arbitrary constants; and hence is
0% the soeweral solution. In order to obtain the complete
saluj’:i\oq it this case, suppose that

o) ) N

the terms of the solution eorresponding to my, My will then be

Wy = + £ 3

iem,z + c_ze(mﬁhlz’

which can ba written g = ¢ (¢, 4 ¢e™). °

* Bee MeMahon, -Hyperbolic Functions (Merriman and Woodward
Higher Mathematica, Chap. IV.), Arts, 14 (Prob, 30), 17, 39.

b L
e LV S
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On expanding e by the expmmntml gories, this hreomes

Y= e"'l’[cl 4o + I —I—ELL + -]

= 3’"" fov 4 e+ b (1 1 M ot 1? i.: + -]
= g (A + B+ "”k + terms 1}1ane¢.img e \
. A\
g ascending po“els of 1), QA
where: A=¢+e, and B=ch. AN 4
Now let 2 approach 0, and solution (3) Art. 5Q° tﬁ‘ke% the form
% y =™ (4 4 Ba) + @™ A - K f,‘c,’““"

66 DIFFERENTIAL F(JU ATION A, [Cm VL

4

As b apRroaches,. g,gmmcm%ngrgz ﬁd,n be‘ ﬁz en iu such a way

that A and B will be finite.

If the a.umllary equation have, ‘a’m’ee roots equal to g, bY
similar reasoning it can be ahowh ‘that the corresponding solu-

4§ = e‘“"(c. ~+ ‘et + ey 5

X

. tion 1s

. and, if it have » equal roots, that the corresponding solution is

y= e'i“\(cl e 4 oo 4 e
The form of \oluhon in the case of repeated roots of the
auxiliary equatmn is deduced in another way in Art. 5.

Ex. 1. Sgl€ @_%§i+4J_0

\n d i
% ¢ By Ay Py dy
Kz“\ Holve T~ T qui 11 a__, dy =0

52 Case of the auxiliary equation havmg imaginary roots.
\’W‘hen equation (2) Art. 5O has a pair of dmaginary v0ot5
say m; = ¢ + i, me=« —if (i being used to denote vV — 1,
the eqrresponding part of the golution ¢an be put in 2 real

form simpler, and hence more useful, +han the exponential form
of Art. 50, : ' '

* Sce George Boole, Differential Equations, Chap. TX., Art, 7. The
‘Beparate integrals, ems, wemr, afems, ..., ate analogous to the equal roob
of an algebraie eqaation, ;

ﬂs‘:

A
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FDI', c]efn+l',ﬂh: _}‘ {_.:',,-Zu- L1 SL— :‘_’“J{:f'.lf{'lﬂ[ ’f‘ r:ze-—l’ﬁ:)

: = et Yo {eos S 4 Esin B} + e (eos B — I sin S2)}
= po (A cos B -+ B sin Bir)
= (eosh es 4+ sinh ) (oL cos B + B sin gz).

] . .. . . :
7 If a pair of imaginury roots oceurs twice, the corresponding

golution 15 ¥= (0 + o) OB o o eetr
which reduces to y = e=*§ (4 + Aw) cos B + (B + Bx) s'%}\ﬁx f.
Ex. 1, Solve o + K Ju + 25y =0, &N

e P 2
The auxiliary equation is w4 8 m 4+ 25 =0, the l‘qpféiof which are -
m=—413¢; and the solution {s y = e—*={¢; cos 8z ghegsin Bx),
> &y N\ '
Bx. & If Y mty = 0, show that m\,/
vl dx? w\m’.\ﬁnﬁbraul'brary.org in
¥ = ¢ 008 3 -F cg 3in mi g coshahe L o smh mx. v : )
Py oy '

- Ty el ZN\/
Bz 3. Solve &7 428 g Y g LY =0
VN g 4(Zx3+8<ix2 d@+" ¥=0
4

. 83, The symbol 7). Ry us,ng";'tﬁé symbol D for the differ-’
ential operator ,;i, equationf(’i)'Art. 50 can bg written *
i A . -

o (D" L BP 4 e 4 Py =0, @)
- or, briefly, NV sy =0 &) -

The symbolicPeceficient of » in (1) is the same function of
D that the firgh member of equation (2) Art. 50 is of m; and,
therefore, thie woots of the latter equation being m,, My, -, M,
equatim},(l)\may be written

\\ (D~ my) (I~ mg) - (D — )y =D, (3
Henee the integral of (1) can be found by putting its sym-
(belie coefficient equal to zero, and solving for D as if it were
)0 ordinary algebraic quantity, without any regard to its use

4 an operator; and then proceeding as in Art 50 after the

roots of equation (2} of that article had ‘been found. More- _

over, it is thus apparent that the comiplete solution of (1) or

() is made up of the solutions of L

—_—

# See note X, page 208, for remarks on the symbol D\
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* would have been obtained,

68 - DIFFERENTIAL EQUATIONS, [Cu. VI .

This symbdl D will be of great service.

54. Theorem concerning 0. One of the theorems relating fo
D is, that when the coefficient of  in (1) At 53 is factored ag
if D were an ordinary algebraic quantity, then the oviginal ,dgf\
ferential equation will be obtained when 1) is given its Opdea’
tive character, no matter in what order the factors wd taken,
Thus, an equation of the second order N3

2 ""\'\:
dy dy A S
i (e + 53 @—P afy = U{

A\
when expressed dbrihd ibrarlivgfirm, iy O
AD = (e + B)D 0By = 0;

this on factoring becomes (D ~--‘f:.j:(‘“D —By=0

Replacing D hy d%’ the laster equation becomes

ENEp

Operating on ywith d%c — f3, this becomes

N\ S/
Z“: _‘._:g__ dy e
~0 (da: Xd—m“ﬁy)‘o’

a.n@,’%erating on the second faetor with the first.

NS

. iy d.
b G2 (@ TBG+ ey =0.

If the factors had been written in the reverse order,
(D~ B)(D— &)y =0, and expanded as above, the same result
It Is easily shown that the theo- -
f the third and any higher orden
_ mbolie factors, whén nsed as opera-
are taken in order from right to left. Other theorems

rem holds for an equation o
It will be noted that the By
tors, '
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relating 1o 1) w 111 Lie proven when a reference to them happens
0 he regquired.®

55. Another way of finding the solution when the auxiliary
equation has repeated roots. The form of the sclution whend
the auxiliaey wpation (23 et 50 has repeated roots candbe,
fornd in another way; naumely, by cmploying the symbo’l’\D
Acgording to Art. 53, the solutlons corresponding to the\ two
equal routs s, of this equation are the solutions oi

(D — )Yy = 0. .m.\

On writing this in the form (D — m;) {(D my)yi=0 and
putting v for (1) — 5y, the above eyenid@ibfaeiotesy org.in

, A\
(D —m)v =10, NV

v

the solution of which is o = (,Les"l‘ .Replacing » by .its valne
(D = )y, A s
(_D — '.JII?,lr)’y‘ﬁ €™, . '

which {3 the linear comalion of the first order considered 1n __
Art, 201; ity solutiondis q\,! = ™ (¢ + 6F). »

Snmlmly the stﬂ\‘mons corresponding to three equal mots"'mp
are the solationg \of b '
_ ’\x T D —m) y=
which mgy 3\13@ written

'\\ (D —m) (D —m)y=

Y o putting ¢ for (D — ?m) %, solving for », and replacmg the
{ ‘*afue of v ag before there is obtained

(I —m)Py = e
Pudting o for (D> — my)y and proceeding as before,
_. (D —my)y = (60 + ¢5)y
* Bee Forsyth, Daz?er;a_tral Equations, Arts, 31-85, for fuller mfnrmau
tion coneerning the properties of . :

-
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the solution of whlch is
Y= ™ (er? o + ), where e = 2)1
It is obvious that if my is repeated » times, the correspond:
ing integrals are N
y=em (e, f e 4 - o2 ) \)
"\
56. The linear equation with constant coefficients and jsécond

member a function of 2. In this article will be cons\deied the
equation { ¢

~A‘
d"- dr ) '
e PE Y Py =X, M
i dr N
the first mfe%&bsfwwﬁcm{s%ﬁgrga.nws:.\that ol equatiun ()
Art. 50, and the second member aN\{hnetion of It was

pointed out in Art. 49 that the wmplete integral of (1) con
dlsts of two parts, —a complementar_y funetion and a partienlar
integral, the complpmenta,ry fatction being the com plete solu-
tion of the equation formediBy putting the first member of {1)
equal to zero, The problem now is to devise a method for
obtaining the partigilar integral.

In the symbolie nofation, (1) becomes

fDy=X @

and the rtflculcn' integral is written y = —;
K g y= (m

5%\'1‘11& symbolic function — (T) It is necessary to define

5 (D)X which, as yet, is a mere symbol without meaning

wFor this purpose it may he said: _117)& is that function of 2

Whic.h, when operated upon by f(D), gives X. The operator
7Y according to thig definition, is the inverse of the
operator (D).

¢ It can be shown from this definition and
Art. 54, that

5 can he broken up into factors which may
be taken in any order, or into partial fracticns.
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For exampl@ the particular integral of the equation

£ . 7,
“‘,b_g“Lu‘f‘B)d—é"‘ afy = X
1

. F—atpDrap
gud this can be put in the form ) '\\
1 x O
D—a) (D=8 N

Now apply (I — ) (D — B) to thig, arrauging{glig factors of
the latter operator conveniently, as is allosvable Ly Art. 54;

this gives ! ) Wgywo;&’aukm ary.org.in.
(D — By(D — a} )@ B
aud since D — e, acting upon 1 4 ,‘___1.___ X, must by ﬁeﬁm&-

Day D—pf
! 5% s begdgies D — 5 - D’_

tion give X, Wh]('.h is

X by the dphmtmn of —--%—'“.v This reduction shows that the
particular integral rrgg)t cqually well have been written
,\\‘,I 1 -
(D—3)(D—e)

Also, A% \'7 1 Y may be written in the form
y\ “{a+ BYD + «f8 v
\s
o\%' 1 ( 1 — 1 )X,
Q ea—pB\D—~a D—gj

ﬁdﬂch ig obtained by resolving the operator info partial
\ f'l'lctlonﬁ; The resnlt of operating upon this with

—(“-}-B)D—I—aﬁ is
“*—B((D B)(D—a)

or —-mg(D*‘S)X—.(D——m)XE;
w—
and fma.]ly, X

X (D= (D -f g3 |



operation should be remembered Now,

i tienlar mtegral of the linear e firs

2. . DIFFERENTIAL EQUATIONS. [Cw, VT

The statement immediately preceding this example can casily |
be verified for the general case by a wethod simigr to that
used in this particular instance.

/a
‘;SB. Methods of finding the particular integral. It is thus
apparent that the particular integral of equation (2) Art. 56

namely, (D)X may be obtained in the two folluwing wayk: 5
™\

W (u,) The operator L may be factored; then the pntmular
integral will be @

1 1 . 1 -

D—wm D—m, D—m

On operatlr‘i'é"%ﬁbl’rﬂéhﬁrgﬁ }éynﬁod}w faLl‘Q(,, beginning ab the

right, there is obtained W

1 1 1 AY f .
. e e =R | e N *
D ml D— g D _)?n'n—l ! ’
fhen, on operating with the Sef}mld and remaining factors in

succession, taking them from right to left, there is finally
obtained the value of the particular integral, namely,

i‘e{ﬂz—mﬂﬂf f o X(d.b)“

(b} The opera,tor
t‘ra,ctmns N ] (

3'\'

D) may be decormposed into ifs partial

. -Nl + l\Tﬁ e — ;IV“ _n

& D—m  D—my D —m,
a,nﬂ&hen the partlcular integral will have the form

¢ .\‘:ﬁ‘re"'l e_"““de J- Mp’mﬁxfe mﬁde + —— + N em“:fe "mndeﬁ.

\

Of these two methods, the latter is generally to be preferred.
Since the methods (¢) and (b) consist altogether of operatlons
of the kind eﬁect.ed b) - upon X, the resu_lt of the mtter

X . ig the par-
quation of the first order,
—

* This i is made clear i in the last pa.ragraph of this article,

.

—
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il .

» = — iy = X,

e Y

which has been discussed in Art. 20 its value is
e fc 2 Nl

- The term 4, in the solution of this equation is the compley

mentary fonction. O
%
Ay iy N
Ex, 1. Solve - ‘} ShoT iy = et AN\, ¥
il i ' KTs.
\"
This equation writtes in symnbolic torm is )

-G+ By =t \
(I — 5T+ 6y %’W}“{ibrauljbl-ary,m.g_ln
" (-8 (D - BHy=eg O

. . ] -‘ 3 ) H -' -
ATy function s y = cpe® cae™ ; aﬂd f.he_E_:'a.l‘t.lg}ﬂ_ia_.; 5

L e‘=:(v"j':,—' L )e‘“‘ %
i)

henee the compler
{nfegral is
]

=~ —. -
Y DpTy 2t Tlw-3 -3
. . Ty . 4z ek.
= {"“J-C "’xt’:"”(f.”c”:"- £ j‘ a”-:ta‘fd:c =ebr — 9—2-—= 3

dud henee the general solgmbn is
0= e e ae® o e

N
Ex. 3. Solve 4¥
&2

Ex. 8. Solve ﬁz_”iﬂ =245z
dy
&

N 45 2 d
Exx’}t Sol @l — {EE _al¥ =X
3 e g dx? Sti.'-r, tlRy=X

12y e

\‘\59 Short methods of finding the particular integrals in certain
“fases. The terms of the particular integral which correspond
R terms of certain special forms that may appear in the secy:
oud member of the equation, can be obtained by methods that’
are much shorter than the genera) methods shown in the last
arficle.  The special forms occurring in the second mgmber
Which will be discrssed bere are:

2
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{a) e*, where o is any constant;

(by @™, where m 15 a positive integer;
(c) sinaw, cosaw;

() eV, where V" is any function of a;
() «V, where ¥ ig any function of .

60. Integral corresponding to a term of form ¢* in the seeong’)
member. The integral corresponding to ¢* in the &egond

member of the equation 7(D)y =X, is fé_} a tlagsill be

shown to be equal to -la—e“. mo\"'

Suceessive differentiation gives Dve™ *a”e” the terms

appeann@’iﬁ"ﬂ‘f'f})%b@lﬁgi'h% WM form D\}m being an mteger,
thexefora F(Dyes —f (a) e'”

. ' 1
-Operating on both members Wltll -
5o D)

(D)f( ) “"—f(D)f(a) €

and this, since ——, :a}rd J(D) are inverse operators and f(1)
s only an &1g8‘l}1’}$§{]lultlpdel reduces to

,\i.‘\j . e =fla )f(D) 9
'Whe e ::'ﬁ' —.1—(3“" _ _1_ P . A
A\ 0" =@

: ~$he method fails if ¢ is a root of (D) =0, for then

; €% == oo g7,

SO

In this ease, the p‘rocedure 18 as follows.

Since a is a root of f(D)=0, (D — a) is a factor of f (D)
Suppose thag f(D)=(D — @y ¢ {D); then
1 oW 1

At - —_.1__ — _,JIA‘
o T 50 T \/@@s (a} qb(a) 3

. . K




R
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If a is a double root of ;kl))_ 3, then I — q anlers tvm:e as
a factor into f(/3). Suppose that f(Dy=(D — a)*y (D); then

S P | 1 .. 1 e“‘__a:"e“-

YD T Oy T D=are@ 2y(@

The method of procedure is obvicus for the case when o is
{ N o

4 root of F{INH= 10, » times. _ ¢\
f :s‘,? .
x 1, bulvc-—-—f-_;._u-l—e-ﬂ‘—f—ae?x -
N
Written in symbolie forn, this equation becomes . \
(D34 Ly=3+e=45e N0
Here the roots of ()= 0 are — 1, - *‘1 ‘{f 5 w}f’&ﬁf the.com lementeg.r'y
function is 2 t y org.n
fETE L ol ({‘L l.(lé: + c ‘sm\x—‘{é)
The particular integral is A

i LN
—_ (3 ep;z o 5e%Yy . .
D3+1(.~.‘“~”' FhE;
subatitution of 0 and 2 for Dpon account of the first and third terms, gives
34+%e= But —1isa roo(’ot D% 4 1, hence, factoring the derfominator,

1 i

i —

D11 ’XD-}I E_D+1T D¥1 8

on subsiltnting 2 } ‘for D in the second factor; ; the last expressmn is
we™=

4

’\* hence the complete solukion is

: r
{_\CP“‘ + e~(f‘ ('os" ‘/_ + £ sin® ‘/_) +3 42 eﬁ +
N .

L}

4 3

B9, Find the partionlar integrals of Exs. 1, 8 Art. 58, by the shorg
meahod .

Q/Ex 3. Bolve --—y er + 132, h-l‘_‘_ﬁ
) e

a2y &y 5
Ex. 4. Solve 2 2d_:c+ y = Jev®,

6L Integral corrgsponding to a term of form «* in the second .
1 ‘™ g to - be

Member, m being a positive integer. When
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evaluated, raise f(D) to the {~- l)th puwer, drranging the
terms in ascending powers of D; with the several terus of
the expression thus obtained, operate on a™; the result will be
the particular integral eorresponding to o [t is vhvious that,
terms of the expansion beyond the wnth power of I need nof!
be written, since the result of their operution on 2» would i,

#ero, O
A Bx. 1. Solve (D8 + 302+ 2 Dy = o2 N |
The roots of f(D) are 0, — 2, —~1; and hence thg thnpleme_ntm
function is ¢; + cee 27 4 ¢ge==, .“’> :

The particular integral

wwawedbraudibracy grg.id_ oy D2\
2D+ 3D+ I g2r)( H+’\~B4 2) '
—Llaoy ‘

_21)(1 D+ - )

—(mg x4 ):T(zaﬁ 9x 4 213,

) 5x being merely 'f x . )

o

The complete solutlgn\is #=01 + g™ f pqet + (° @2 O 21
The operatot on}ﬂ\could equally well have been put. in the form

NS - Tf1e8
. 2N/ 2(13 §+4D+ )
and this g'i\es the result already obtained. One might think that it ‘i'i'i!‘lﬂtl
esﬁa,ry'to add anocther. term, D2, in this form of the operator; ub

.thg ot £ T t]ns term would be 4 numerical constant; and this is already
Iclud.e.d i the ‘complementary funetion.

_Ex 2. Solve Ex, 2, Art. 58, by this method.

Ex 3. Solve --3y+8y_z¢+2$+1

gt

62. Integral correspending to a term of form simqz or Co8 &
in the second member. Successive differentiation of sin o gived

Dsinaw = a cos ax,

2o i .
D 81 ax = — of sin a,




§62] TERM OF FORM SIN ax OR COS axz. 7

Lisingr = — o cos v,

I sinar =+ afsin az = (— @7 sin ax,

* and, in general, (%) sinar =(— «®)" sin aa.
Thelefore. if @ (D" be a rational integral function of I A
& (LF) sinar = ¢ — a®) sin ax. \\ D

- From the laiter equation and the definition in Arty a‘?’, it
follows, since ¢ (— u) is merely an algebralc mult‘.lplnar, that

. \
_.__’ SN G = - — " — -— 8I0 axe N :
$(D% ¢>( )
Simifarly, it can be shown that wx{wjti\if-aulibrary,org.in
A CO8 0 = L ch @
?
N (- @)
and, more generally, that ’
. 1 ’ ". 1 . y
== sin (o 4 (z\m—’e . .sin{a® + &), =
¢(D~ (@ ¢(— o)
and (’b({‘ﬂ\’—a e (30§ M‘!‘m
ol AT
Ex. 1. Solve d.’f' sy,
3k Jf‘d, Y =ce2x;
that 35, :~\’ (P 4+ 72— D~ L)y =cosBa.
The comgl’g}mntarv function is ¢167 4- g—2(¢s + €52); and the particular
e, \ _ 1 1 -1 . :
=— 1 eosfm=—_ -. 2% '
’g"rai\\ Py B 1% il L
AN o D=1 =D oz
\;", . i 1)230529: =% C
:w—z—sinix—M; . v
25 28
_ hence the complete solution is
i cog2x
i y:cw"—k6““(1"24“53-5)""3531“2‘6 g

The mumber, -- 4, might have besn subsmtuwd for D% at any step m
the worlk, : _
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g ol Je
Ex. 2. Sclve i . @Y = cosazx. ftv((,%{ uu . LL L!,Ckl. i

The complementary funetion is ¢y cosax + cF sinax; the particular
" integral is S cosax ; and thus the method fals. )
) I3

COE X = —-—1
2 2 +

In this case, change ¢ o @ + & this gives for the valuc of the pa.mculnr
" integral, —};—cus(a + Rh)x; this expression, on the mpphcatlon d\the\
a?

principle above and the expansion of the operand by 'l‘mlor’s serles,

- 1 — - L2
becomes PRy (cos ax — sinax « ix — c05 ax - T A ") 5
The first term is already contained in the complcmgmry iunctloll.
and hence need not be regarded heve ; the particnlarJatéural will accon: -
. ingly be written. C

www.dbraulibrary . org.in
1 (& sin o + ]"‘k gé terms
Zath

on ma.kinu'-h apprnach zero, this reduces L0\ _—:‘"‘ B ox
v 2a

ilf!;}ir;ber powers of A); i

The cemplete integral is y = ¢, cosax + egsin g + EELEE
3

&y _
Ex. 3. Solve dy=2
= smi .

Bx. 4. Solve ?y + y xsmS x — cos? § o
63. Integral &(\espondmg to a term of form ™1 in tae j
second mempgf,“ 'V being any function of . 1
Since (N'De*V = e=DV + ae*V = (D + ® V; i
and, D@}V—— @D+ @)V + =D (D + @) V= e=(D -+ afVi. -
|

anfiim geseral, as is apparent from snecessive differentiation

*

¢ \ b . Dne®™ 7 — E’.M(D + a«)“V ;
\™ therefore, JF(DyeV = eazf( D+ a) V. eﬁ' Y. {1
Now put /(D +4 V=V;theaV=_1__y, AlsoT
Brav=V ot ’
“will be any function of =, since V is any funetion of 2. Subr
stitution of this value of Vm (1) gives L'
F(Dye f(D+ ) =g“F; -,f\f]



"~
§Gd 64, ] TERM OF FORM x V. i

whence, operating on both members of this equation with

1 .
——, and transposing.
C Ay :
. L REIE "1 BT 1 s ;3\ r
_ L SR JD+a ¢
. whete V,, as has heen observed, is any furetmm ,f 2. N
. <N)
. e
: 2y N
Ex, 1, ¢ B0 = e «
Mx 1. Solve e by = e, _ A}‘
k] )
The complete solution is LD
. . . ] 1 N \\'
y:'_{‘:lbl)sﬂ'i—]-v(‘-QSll’lx-]-I}-I_ — re \J
. By the forrmuila just obtained, W braulibrary .org.in
1 2 s 1 . 5:1. 1
e Ty, —;
Dyl (D+2r+1 3‘5&41)-%1»

and this, by the method of Art. 61, gwes’the mteg‘ra,l —(o.ﬁ\ 43,
Jhe complete anjution is

"s

yhtlcosx—i-t.gsm:r—;-ﬂ—[ax—‘l)

Ex. 2. Solve 27 . d" — gl gin.
e i d&\ 2 = ePrsing
dry ¢
Ex. 3. Solve Ex-{—!—\{\y = %% + e oos 24,
£ )

64, Integral orresponding to a term of the form #1 in the
second memﬁor V" being any function of # Suppose that a texm .
of the ‘qua #V oceurs in f(hy=X gt
Dli{\r(,ntlatlon shows that

AN DeV = aDV+ ¥,
) DV = alFV +2 DV,

DraV =DV 4 'V

% 88 it may be written, = @DV + (c—i’—ﬁ ) .

Therefore, F(DyeV=af D)V +7 (Y. (@)
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The formula in the case of the inverse operalor -~%
derived in the following way. J )
In formda (1) put fUNV =V, Then V= L V. Since

S 3
V is any function of 2, V7 is any function of w. The substite]
tion of this valuasf; P in (1) gives \‘3
. ! A © M
f(D)&f(D) =wxV 4 f fU) " (h}"
On operating on both members of this vqual\n Arith I",j
and transposin 7y
e 9] ) I
2 wyw.dbraulibrary. org in '

wVi=w BT <

70" f(D) f(D) fU )

1

={o— S ;
{ j‘(D) f( 2 y F(Dy £ .

The particular integral cowespondmg to expressions of the§
form a'V, where » i3 a pesltwe integer, can be obtained by
successive applications of this method.” Constants of inbegra
tion should ngj be 11}§roduced in the process of ﬁndmn‘ pat-
ticulay mtegra,ls \ .

Ex. 1. End the partienlar mtegra.l of Fx. 1, Art. 63, by this mel:hod»
The part}clilai' u‘itegml = : e = (a: N D) L e

p D2l A4l
SR, _meE 1 e
S, 5 DR+l 3
g & . . LR T T
N T . T8 DE41 B :
N\ ___62‘ r
}.. —H(ﬁx-—4> . -

4 Py
! Eﬁgqfsdlm +4y_n:smz Ex 3. Solve E—Jr—;.,zcus:r.

g
>§y . EXAMPLES ON GH PTER VI,
L |
@ ﬁ\__l -—-i+4y:0. -

» (DS 18 D5+ 26 22, 82 D + 104)y = 0.
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o i 72 b %T“‘»
3. .(;-‘.’;.4. 2P L e e ./12 ety

oY s BEC i, - - A

. ik e gl a2
&y of <y d.r;
. = ¥ - = P, A -2 gl
Logatdu=sindebepal 18 hen oy o
\ P d‘; T figg = - pmr, 4. (D°+ n¥y = et \
@ &y o 4 ¢ ’:\’
L (D — vy = e 4 oo, 15, = ely =2t ~A
By Ly Ly diy  _diy  dYy O
e 3 Sy = “1B. L0 _= = NG
dz?” T T T Sy = 16 dat ¥ (E.r“‘ “5?' 3
: d*?f &y ti“-u iy _
3 Tl A= = 2+ b 17. e Y= e‘“(‘fm}. ”
1
iy widbivg ullbr - ’
9, d‘ U'—‘]u@{ ]2?{:_1;, " 18. (?J‘}N' —9 alyorg in
: dﬁ A.’E.E

006 19. d—é’“ :—-—6_;—9”(1+x)

et T 7 gl

>

VR T .
)b’ﬁ- S R o = st o ‘ ‘éo “I"" ‘J5J+ 4y = ¢= cos

Ty By «I_a(‘:'.
21. ST 5T = a7,
\ ' ar ¥ Jrir.'f i ty=-

22 (D' — 2N 3D+ 4D + )y =2
3 i
a3, !r{\}rfq c_d_zir_J s + .

AR dr‘
N
< F’T’%\gf,u—yﬁmsmm+(1 atyer,

}5 (D2 — 4D+ 3y=erc0os2x 4 cosdu
“' 26 (D* 3212140 - 2)y=—e~fcosH.
87 (D2 9D 4 20y =20
88 (DS 3174 d)y=c

v 2 g&ﬁ +y=exsing + & sihxﬂ- Foo

. 7//

2
v 30. Show that V2 F "‘_‘1{ . X, where N and I are co
(D —o) g2 :
to tvme the real part of —_ (— 1 w) x operated.'
2 \D—a+iB

.. that ig 1o £ 3:: 13“'-;3 az pog B - Xdi — e”“gs__ﬂ?je-ﬂsi ﬂab-X
' I (Johnson, Dif BgtpAft:
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(Ch. VI ©

CHAPTER VIL

LINEAR EQUATIONS WITI VARIABLE

COETFICIENT

65, The homogeneous linear equation.

S.

¢

{.

~
Firstusthod of solutiea.

This chaperwwiitatitebsanf. chigenr equations in which the

coefficlents are fuuctions of 2.
it will discuss only a very spemal cﬂ

For 1

}110:.1‘, purt, however,
s of these cyuations,

N

A homcgeneous Linear equatmﬁ is an equa,tmn of the form

dry i
w"a;ﬁpla:"*‘dm“ﬁﬂ -+ Pn. ﬂ’ +pu~X

where p,, py <oy .a’se constants, and
This equation{dan”be transformed
" constant coefﬁme\s by changing the
o z, the relatlon between @ and 2 being
' g\"w‘ - z=logw, that is, %
It{has chanoe be made, then
dy d’r;dz: 1ay

®
X is a function of &

into an equation with
independent variable &

= €5

:"}.d T rde xdr

' P (@_@_@{
da? o\ dA dza dz S
@y _ L@y a1y @y
dax” a\dz 2 g1l
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On putting I fur -f y anct clearing of fractions, these equa
iz

tions become

il
il:d'é == I)‘a)r, *
2y ;
w2 =D (D —1)y,
thx \ \\\.
&y Ny o~
#14= bW -1)(D -2y,
dii;df . S : '\:
g = DD~ TP =2 oo (D~ O

, www.dbrauljbl'ary,org,in
and, in general, the operators only and not the operand béing
mdieated, N\

e L =D(D-1) - DS, ®)

; Hence, the substitution ot‘_._;e'zj_’io'r @ in (1) changes it into the
orm AN

DDy (D -0t YW DD~1) -+ (D= 42+ + Pl
= Z} '\i‘;? (4) .

- Where Z s the .fun\ction of z into which X is changed. ~
Fquation (4% having constant coefficients, can be solved by

the methodg “of the last chapter, If its solution be y=f(2),
“then the Sdfution of (1) is y== floga). .
l‘h,e\“éfﬁ‘ire equation (1) can be solved by puiting = equal to
ea’»@‘m changing the independent variable from = to # which
ABduces the given equation to one with constant coefficients;
yabd then solving the newly formed equation by the methods

. of the preceding chapter.

G Ex 1. Selve xz% ;-_x%-]-y:moga:.

s . e

" On changing the independent variable by putting « equal to &, this "

- Eqnation becomes
IDp-1D)—- D+ lly=2a
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>

. On sdlving this equation by the methods of Arts. 5, 61, the complete '.
Int.egra,l is found to be

" =et(n o)+ 22+ 4,

which, in termsl of x, is .

y=x{ct + celogu}+ 2loge 4+ 4. v

2, N .
Ex. 2. Solve xggf_y -:y =32 £ \~\|
a2 2N\ ot
L% \
66. Second method of solution: (A) To find the cemplementary

function. The solution of \

wwwﬁ%rhlﬁlﬂ"lanmﬁ -+ p,{_ - @ 1

can be found directly, without expll{*\tl} making the tfrans
formation shown in Art. 65. g i

The first member of (I} becomes, when o is snbstituted ;
for v, R .

fmlm — D(m—2) ... (m —»1‘@,"—’[—’1)—1-})1?.-1(1}1 — 1) —n +2) |
| t oo 4 pufan

{ _}

m(m~1)-- M-—n+1}+plm(m—1) o —n 4+ 2) i
@5 + e pa=0

thg’ substitutmn of o for y makes the first member of (1)

veuisliy and then 2 is a part of the complementary functiond

of sthie “solution of (1). Therefore, if the » roots of (£) I

1y, g, -+, My, the complementary function of the solution Ufé
\(1) is

Therefore, if ;*,\

' E
o le'“ 4 C™2 = wee J 'cnmmu, %

i

‘the ¢'s being arbitrary constsmts = .
. Tt will be noticed that the first member of (2) is the sal!
'fuJ}cmon of m a3 the coefﬁ(}lent ‘of y in equation (4) Art. 65" 15‘

‘an integral y = @™ of (1)’
thel'e 18 a'fl ']Il.t.e ']_'a.]_ y _eﬂhz Of (4 A—l’t 65 a.]ld hem,e, as hﬂs
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already bee’n seen, an integral of (1) ean h{* obtmne{i by substi-
tuting logo: for z in the integral of (4) Art. 65. Therefore, if
{2) has a root 4y repeated v times, the corvesponding integras
. of equation (4) Art. 655 being
[ i T A

; the integral of (1) is )
Lo N\
¥=wiutoglogaet - fafloga)y .
\ S
L/S‘lmlhuhf. if (2 have a pair of npaginavy roots o+ 8, the
AN

torresponding integral of (4) Art. 65 being N )

7

¥ = 0%y cos Bz 4 g, 8in ﬁ%}*’w f{}‘auhbrary org.in

&/

the integral of (1) is
¥ =i cm(ﬁlog’l)—f— Q“Sm(ﬁ]@g'@s‘

Rz 1 bolvo.tSL;’r—c 5w d.r T:c@&f;nﬂ

Substltntlon ol wn for p t*u..c:. -

\(111‘3 + g =0

the roots of this oquat\m} arg — 1, M;
2

and hence the so].u,bzr»n iz
\ ¢/ : .
'Q"Q’ Dk f ¢z coa(l;mgw) + 3 sin (-‘ﬁlogm) }
Ex. Y\ivmd the complementary functions of Exs, 1, 2, Art. 65, by this
I!]eth&k .

\?x 3. Solve r‘fl_y_;_ﬁ xﬁii"_f_ "!:c2 39134.3:.0,
W dx
67. Second method of soltttion : (B) To find the partlcular inte-
gral.  In this article and the two followm the pdrtmuhr

integral of

,!d"

Wil be found.
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|

& d/ d A
i Y e T L] e == — (R '
ﬁ’ dar adm('L dx 1) (td:l: tr ya

N\

Since the symbol D in (3) Art. 65 stawds for f::_{) that is

for x-?-, this equation may be written
da

. { o )
therefore (13, when ¢ is substitnted for .LEE therein,t take& the-]

it
form

{6(6—1)--(6— IOy (Bt 2) oI X.

The coefficient of ¥ here is the same fmmtiﬁ}\l of 6 as the

first mempbey, of (), ik, 6§ 4 phon-

Let this equation he written in the sym@hc form
FBy=00" @
The method deduced in Art.s 66 for finding the comple
mentary function of (3) may ow ma,kmu use of the symbol 8 be

thus indicated: If the » rootssof J(B) =0 are 8, 05 -y b the

complementary function o8¥3) is
clat&-k eox® o oor b o afn,
the 6's being a.,rbtt{&ry’ constants,
The partlcular integral of (3), after the manner nsed in thﬁ

case of f (D)J X, in the lagt chapter, may be expressed .
the form\—-X A method for evaluating -~ X must now .
1) 0

bc \nsed

N _ 68. The symbolic functions f(6) and LG As to the direch

'v'b} rabol £(6), it is to be observed that its factors are commutd
© tive. For examjple,

* Bee Forsyth, Differ enaz‘az Eruations, Arts. 36, 37.

+ Thus & stands for the £ 3z °F Art. 65, which was there symbolized B

D; but as D had already been wsed to indieate i ihis new symbol s
requlred

;
4
i
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SLICS Br=29 (Dot apy;
md (B w0~ BB~y =rTY+ (3 —u— -yl

+(¢¢B+B?+wra~ﬁ—7+1)mdfx*aﬁw;

and this shows, by the symmetry of the constant coeﬁ’tcim‘it:?.,\
that the order of the operative factors is indifferent.( (The
student can complete the proof of this theorem concez nmg Ft)
for himself.

aIf fgﬁ) X be defined as that function of\g \whmh when
Uph”md upon by F(6) will give X then\f%%bl RYH R %‘P‘Eﬁ;‘ﬂ]e
method followed in Art. 57 in the ca,se\oi\the symbolie fune-
tion —--., that 1.. can be decopogetl into factors which are

S (D)

commutagive ; cmd also that it caai be broken up info pa.l’tl&]
~ fractions. v.:,

69. Methods of finding tﬁe’ ‘particular integral. It is thus
apparent thut the parpichlar integral of (3) Art. 67 can he
found in the Eoilowmlg\wayq

\/(“) The opmat(h\f may be expressed in faetorial form,

1
ang j_(—) Xw LH then become )
'\.. 1 1 s 1 X.
\M Hu.‘q [ 0 — e, ’
A
herg\ {he opetations indicated by the factors are to be taken

J{l autcessmn beginning with the first on the'right; the final
N\ :re'ault will be the particular infegral.

-\ @ The operator 1 may be broken up into partial frac
oM

\

fions, and congequently —— 1 % be thas expresseﬁs

@

T, AT A S
(6-cc1+3——a2+ +9"Lu/’
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the sum of the wsults of the opemtlom indicated w11] be the ;
partieular integral. |
Since the methods (@) and (b) are made up of operations of«

the kind effected by .

upon X, the resull of the lafier
M :

operation should be impressed upen the meuory. s\':
Now, X is the particular integral of the hnem \equar
—
tion of the first order <~~f;'
m@— wy = X. ? .
dz ~\ -

The papicnlpininsral 5)f0i,;lé1§nequ'mt.10n\bv Alt 20, is found
to be m“f:v a-1X da: therefore \\\

X

1 X= ’ca‘[ Lq_‘fxd;c.
— A

Hence the method (a) w111 gne

o | ame s a4 Xy v
S f S

as fhe value of e\paxtmular 1ntegra1 of (3) Arvt. 675 and the«’
method (0) will give

N—lﬂf“if :{“Xd$+N:{£“=‘r e X dw + -« + N, J'“"f}’g_&u—lxdg.

si'jaﬂue. :
.'When a term @ N) is one of the partial fractions of
™ — "

AN ‘ . . _ _
./ (8), the operator 2 = , st be applied to X, times in sue

cession; and this will give the regalt

a,‘“fa'—‘fa,—l f r = 1X (dw)y™. B

Ex, 1. Solve mﬂd“ o fii ¥ = _ .

';-5?-[‘_3‘5‘*_ -_f(‘*) is (¢ — 1}~ 26 — 4, which veduces to (6 — 4)(¢ + 1)
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. . Ca .
Henee the comprementary function s ezt 3. W and the particular

integral i ———— —— 5,
¢ B —1(-15

On wsing partial fractions, the latter will be written

1, SRR ; thig reduces o
avd -4 ¢ 1

7N, ¢
. . . . 28N
gx4jm + l+dedy gm‘ljx‘ +4ghc, which on integration is ~ N
rtloge 2t A\ it
T RO
The complete integral is, therefore, w'\ &
¢ xtloga »
p=opt L == \
y=nEt ety MWW-dl{Fuhbrary.org,in
e . p )
the ferm — 2—_ 18 Included in the term o2t of the cmﬁp ementary function
i . W
: Py ey AN\
Ex, 2. Solve ".25--' 2hnl i dy=yt. £ )
= # et 7 }'ra,‘JsT y=x s W
WY
2. 1 AN
Ex. 8. Solve o ¥ w1 = ¥
e ot 23‘{5;rr ; 2023;’:‘&.1 + 1)%

NS

70. Integral corresponding to a term of form o= in the second
Dember. In the case ’af\"ﬁm homogencous linear equation, as
 that of the equa&if\ﬁ«‘liscussed in the last chapter, methods
shorter than the wenbral one can be deduced for finding the

Particular integrals’which correspond to terms of special form
in the secongl:@?eﬁﬁ)er. For instance,

.

: Ve s
B, U

N 7@
E: 53@“‘ (1&%),-’“ = ma", (:r ﬁ%)g:c'ﬂ = mZzw, and for any positive
. Nod oy )
?\ﬁlteg‘e‘f ry (24 Vom = nrem. Now J(9) is a rational tntegral function of
8, and l.hGl‘CIOI:c F(®)am = fm)am,

Applying -1 to both members of this equation, and fransposing,
T(m) being merely an algebraic multiplicr,
. _]._ = b ™,
;o fomd
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= . .
“ If mis 2 Toot of f{#)=0, then fm)=10; and hence the method fails, |

In this case 7(6) can be factored into (6 — m)$(8); the particular integral
then becomes - l—:i:?", which reduces to

v op™; this is
o0 — m () ¢lm) —m
am log
equal fo .
p{m)
If m is vepeated as & root r times, F(#) = F{#) (6 — m )", and the cor-
s 1 ; ealne ErUOR XN
nd tegral 1§ ———————2z™, which has the value — 5=
responding integy: S ey 1 1 IO
Ex. 1. Solve xﬂ%Jr 7x%+ By =25, s '
. Here f(8) is #4+66+5; AN
' ' ion i -1 AN - cionll
hence the. COMELEREPAIRIIREoR g5 g0 + o N the v Skl
integral is —————1F which, on substituting, 6@9: g, becin®s —-" Fhe
2364045 e ! )
complete solution is thus ‘x\
§ = e 3 o ¥ "
if 1 zi‘r 31- 50

Ex. 2. Find the particular integré._l’s: of Exs. 1, z, 5, ATt. 69 by this
method, A\ :

53}“) 71. Equations reducible" to the homogeneous linear form.-

" There are some eguabions thaf are easily reducible to the

homogeneous linear form; and hence also to the form of the

linear equation‘ﬂ Constant coefficients; for, as Las been seel

in Art. 65, thése two forms are transformable into each other. -
Any equation of the form *

2y

'ﬁ. .-. n—1 Yy
(a-'g;@ dm,,-{—-P](a-i-ba:) Fl.,ﬂ.. _
K\ P Py=F@, O

N\
\» where the coefficients P, ..., P, are constants, is transformed;
into the hamogeneons linear equation,

]

w0 Py Py G dy .o
i = LA R

P dy Py 1 z—a\
b‘—‘zdz_!-ﬁy__b_“.F( ) %

* This is known as Legendre's equation, See footnote, p. 105.

- T
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when the lndepr‘m]em viriahle iy lhzmrrml f1 om z to 2, by the
Sbstitation of z for w 4- b
If the solution of (2} e y= F(z), the solution of (1) is

y=F(a+

If ¢ had been subsiituted for « + b, the independent vari-
able thus being changed frow @ to ¢, there would have been

derived a linear equation with constant coeffeients.

Ex. 2 Solve (2x 1

EXAMPLES ON CHAPT‘&RVWH@rathIary ol

Tx 1. Solve (842w ,_';.”

\_..fa?
o
[i

tf1

G+ 2:’-’.‘);';—{-83{::0.

i oy
Lt 2r —1 — 2y =0,
¥ )af #=0

4 piy i fu oy, 7
1. d&y W, 4 BH i 4
T o ' Fide T L . ’..:\s
iy e oY
w2 St e .:'+ 2y g, v’ R
<Py o 2y O
3 @ dms_‘ Fx2+"r ‘2—8?;:;0
ap -
Y d (3:+G)2——=—4(x—’—a} N ‘3;:.7:.
82 gt g O
- 8 —— \K\{’t———fiy:(}. :
diy LY
8w s+ 2m2~?_="“ur 2;:10(x _i)

T 18(x ﬁ%*‘ Y5 080z 4+ 1)3

\~vafﬂ+4w+3
+ &) — 1y = wm.
3 Yo — 3D + d)y = am,

\*m (®IF 4 Gaspr + 92202 ¢ 3D + Uy =(1 -+ lege)ys, .~
M1 ﬁd::%— g8

¢y_ﬁ

dy

o +xy=1.

G C AR PSS N V2

"d&‘pl_ﬂ. [z2 2

/'1\4,. it
ST g

~@m— 12D 4 (w4 2y = n2mlog 2.
_logz . sin(loga)+ 1
= .——ha:—“'——"'_

“We_ 5. %
p 3Iﬁ+

a—=r

41mw+na

AW,

~\\

g‘ln

Y L8+ 1>d”+ #
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CIIAPTER VIEHIL

EXACT DIFFERENTIAL EQRUATIONS

TIONS OF PARTICULAR FORMS

iN. SERIES.

7 \\\1
AND EQUA-
TN TEC‘TRATIOH

7

{

: Y
72. In this chapter lithear differential eguasions that are.
exact W11W’é”f¥l§ﬁﬂ§bh}§§'eﬂ OKHdthen equmkm}]s ol certain par

ticular forms will be considered,
under soine one of the types already t1e=at(,d

bmﬁe of the latter come
but in obtaining

their solutions, speeial modlﬁcatmns of xhe general methods

can be employed.

It often 113,9116115 that an eyuation at the

same time belongs 1o several. forms; instauces of this will be
found among the cxamples ur Args. 76, 77, 78, 78, 80

73 Exact d1fferen1tgl equatwns defined.

equatwn

\ \\t ; (d"y

dw "

d, .
o V=%,

A d iﬂ‘ergutial

is sald tof Toe exact when it can be derived by dif Eerentiation

merely\d.,l d without any further IJI'OLLbb from an eqnation of

the next lower order

¢

d*ly
%(dx“ R

’dw

)"_fXda,Jrc

Exact differential equations of the fivst order have beeﬂ
treated in Art, 11.

" 74, Criterion of an exact differential equatwn.
will now be found which the coefficients of a dlifuentl&

eguati on,.

P“dr'+P1

dx?:—l

++P,,yO

The couditiol
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must satisfy in order that it Ie exact, The cocffivients 12,
Py, Py oare Funtions of o o what follows, their <nceessive

o darivatives will be indicated by 7 270 . f2
The first terin of (1) i evidently devivable by divect differen-

[, tiatlon from 72, e Fi, vhich s therefore the first term of the S
[£9

£ integral of {13; on differentiating this and subtracting ’r.ha'
j& rcsult from the firsl, member of (I), there remains ()

L 3
s,:

{ y \ .
P ISP Py N (2
{il'.{_.! d wl .\.

The fivst term of (2 2} is evidently dtrlv:able by differentiation
from (P} -~ 17 }T:_"u, which is thelefom?’{ﬂ%' vhibmar teng. inf
the intogral of {1j.  Ou gubtracting thg a’euvahve of this term
from (2) there remains {

(PP, + PyET w Pj;{+ -+ Py

The first term of this e}spxegbmn ig derivable from

_3 -
(B Pine Pt.”)-m_-“; -

N\ R
W]mh will. thexcfok be the third term of the 111‘regr¢11 of (1)
By Lontmmnn’ tIus process, the expression '

d
il?\l P e (= 1) P Vit Py - (3)

! ;‘”—u b&l\eached the fisst term of wihich is ewdent]y derlvab]e‘

mm’ o

\ 3 21) + +( 1)n-—-]P {5 n;J‘ . (4-) '_

__ Ivo‘rh lterms of (3) will be derived from the expression (4), it
- the derivative of the coefficient of (y) in (4) be 3‘1113'1 to 27,

that ig, if .

G B b pPE =0, B

But I both terms of (3) are derivable from the exvres.fl_on. _

14), a1t integral of (1) bagnow been,obtained in the form i
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d s ot *n;
dmnyl_i_(Pl Pl)dn—2+(1 _}”'i"‘” )d”_

+ o (P Pas' =1 Ny =0 '(ﬁjj
Therefore (1) has an ntegral (6), that I8, (1) is exact af tis
coefficients satigfy condition (5).
)5 O\
75. The integration of an exact equation; first integrdls. ¢4
the second member of (1) Art, 74 be f{=), aml r-ondltwn &)

be satisfied, the second member of (6) will be %{1}) da+c

If equation (6) Art. 74 is also exact, its intégral can be found
in the spme avamalandotherracess can ey repeated until an
equation of the seeond or higher ordér)that is not exact is
redched ; in some cases, this process n be carried on until

a value of gi, or of y is obtamed, \Equation (6) is called 2 ﬁrsi

~

wntegral of (1) Art. 74 o\

It is easily proven by means “of Arts. 3,4, and Note C, p. 194
that any equation of the #th order has exactl ¥ mdependenf
ﬁ_rst integrals.®* [Beg mote, page 108.] ‘
_‘Bometimes egat;@ns that are not linear can be solved b
the ‘trial method® employed in the case of (1} Art. 74 fa
@stance Exs 6 7, below. ",

. k

v"ﬁx l.,\Solve ::—~—+(.czqs)dxs+ 4x‘?'f—|—d? _

%{s i3 neﬁ.her a hothogeneons linear equation, nor one having Cﬂﬂsm
opefficients. In it, Py=u» P1=a? -3, Pp=4x, F;=12; and the 0911
dmcm that it be exact is satisfied by these vaines.
¢ \ . Integration gives

IE - R “—+ 2%’-4»1 T

o The condition under which thl.s equation is exact is also satisfied; mu
) gra.t.mg again,

_ “‘@*’(?‘f’_f'ﬁ)y"—- e + e

* S%Fd'_myth-_,'l)iﬁ’ereﬁi’al Eguations, Arts. 7, &
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This is not exact, bul it is a linear equation of the first order, and
hence solvable by the method of Art. 20, The solution is-  ~

=7 2 #2

4 : &
. (115‘;,(1::: + c-,:j--—b_ de -+ o3
. x =
By,
sz Solve r°f2+‘ ‘ +(?——6.z:)xy—a:4+9x._

The coetficicnts of this equation do not satisfy condition (5) A];t. 74
and hence it i3 not exact, Howcver, an integrating factor o;mca be
deduced, which will render it an exact dlﬁerentlal equation. (nf;.

Multiplication Ly = gives K7, \ A
\ N

aren L J+ Bxdt mJ‘f y F (3 — Gadetmy = (x4 252 &,
di? W dblaullbralyorg in

Application of condition (5} Art. 74 to the ﬁr@‘ “member, shom that
~ for that condition to hold, m must satisfy tlae exlu‘atlon

{m + 2Y(m 4+ Tyemtd =3 (*FJ@+ 2)3:””‘2: L

")

. that is, 72 must be equal to — 2. &N
On using the factor l‘,, the nrig}ii‘zrl equation becomes

de,r

dcz{n

a\-{ 13 —6x)y= :c2—'- :Ei’

Whlch is exact,

Integration gwes h firat Integral

.‘\ T "+ 3x(l —x)y—--—+210°'x +g~

+ linear eaﬁwﬁon of the first order, . S
&

\?!:-x\ Solve xji + 235!+ 2y= 0.
\ \’%x 4, Solve E i 12 :dij + 2emy — x""
‘Ex. 5. Solve VT .__+2xgz+ Sy =

‘EBx: g, Fmdaﬁrst. integral of dy & y 5‘3‘.:‘CLr 2

. dedicd ™

. d2y dy - L
él Fx. 7. Solve x*yd?s +(xd_:c_ ?f) _3 ¥ - 0'- s .
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oy .
76. Equations of the form }h;'{ = f{x).

This is an exact differential eguaiion. Integration givesy
-1 - - .
Z—?——?’;:ﬁ@) dr + ¢y; & second integration gives
mll

d:L“ 2 fff(a.)(dt,) + e -

by proceding in this way, the complete integral N

= ff“‘ ff(m)(dx)n -+ al‘?"m 1 + e ] 3 '.':w—'f\a’n_lib' +a,

s obtamed % dbraulibrary.org.in x.‘,\\,’
Ex. 1 Solve - = xe ‘..x\ v
Integrating, > d

%:xﬁ — &+ e, \
€_ig_|" =gt — 2 et -{::&1;‘:4— [
dx
Y= Tet — S‘e* + cx? 4 oot + 3.
Thiz equation could a]@\\bme been solved by the method of Chap. VL

any
1+ Ex. 2. Solve \iz"‘

I

- *Ex. 3 Solye'\ ﬁf‘dq‘i +1 = 0.
"¢/ .
*Ex. L:\Sqlve % = xtsinz.
O~ 7.
. dﬂ
73‘ Equations of the form T fly). An equation of the
~foi'm

> : d2—-”~’ = )

whmh in, general is not hneal and is not an exact d1ﬂe1eut1&1
equation, can be solved in the fo]lowmg way:

e

Multlpheatmn of both sides by 2— gives o

dy d* dy . .
° % d:z: da:2 2"‘_' (y)d_:]} ’
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. i rrh,r II Hyedy e
mtegmtm o, \ “ L ey ry
: . iy
. From this, ST die,
2 "’[f(v)riv+t;’
.. 7 ‘\\.
- ol NS
whengee R = + g A\
o ujj‘}”})d‘,’,_’_clgz Y N/
N
Ry ol i ~ o 70\
151 Bolve g T + 'y . m'\\.
'$)
o, LTS d? . \ 4
Muitiplying by 257, 2° i ; A Zaly - v
R ¥ Ly oy ﬁ
www.dhbr ag{hbral y.org.in
- Integrating, (L?:) - aly? u&ﬁ (g% .
i o )
' on putting ¢ for e ; OO
separating the variables, - ade)
Vet oy v{',‘
and integrating, sin-1 y; axr -+ s,
hence, .

y\—h ¢ sin (ax + c2).
The given ditferential gm\ttmn is linear, and y can be obtained directiy

by the method of J\‘V\\g)‘ The roots of the suxiliary eqllatlon being

iy the solution r'-.» ¥ = sinar 4 ez COSaL;

:ﬂratu ‘\} ¥ = ¢y sin (ax -+ ¢5).
;o This t‘qilfmw‘n Is an important one in physical applications.

\Y
Tx, %’S’olv& rﬂ,:_" ]
* \ ] L

form of these equatwns is

d"y dy 2)==0.
I d_:c" ’dﬂ’ AR




98 DIFFERENTIAL EQUATIONS, [Cn. VIIL

TEquations of this kind of the first order were considered in
- Axt. 26; and those of Art. ?'6 also belong to this class.
Fy _dp d'y  dv'p, ‘
d2 = a7 d T d

If p be substituted for EE , then
and (1) takes the form

dﬂ—l.} N ;.]
* f(&zf'._}_ls ey 3*'):03 2\A |
NS ©
an equatlon of the (n — 1)th ovder between & and p; :md “this
- may pDSElbljr be solved for p.  Suppose that the sulutmn is

dy A,
- P ZE—P( )5 \V
) www.dbraulibrary.org.in \
_ -them _ # :f!«’(q:) o -}-{\\

Tt the derivative of lowest ordex appeamm in the egnation
o dr
b y, put —Jﬂ.p, find p, and .thezefrom find # by Art. 76

dxr

By dy .
Ex 1. Solve 9'3(&3—4 (wﬁra =4, .

Put!éisg p for d;‘ thls.macomes

dx -
3 Y
. ‘\ d%':- ixderﬁp 4; -
nteg?a{ing, C\'.? p:clzﬂ+c2x§i+§, -
m;txeuce".“ D v=ard+ bt + 3z 4o ]
Py dy\? o
*;Ex§ Sol = -_4_’) .
AN O 1+(d:\:

NS

\ :’:}?Ex. 3. Solve (14 .1:9) @ + ]I..}. (d_y)2 =0

p;
@y d‘"y a2y
B4, Solve 2507 7Y (d‘iﬁ) o vV

79. Equations that do not contain z directly. The typica‘f- |
form of these equations is , . o

dy  d
A ,y)=o ®

53
Y
s
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Equations of this kind of the first order were considered.
cimArt. 265 aud tlese of Ark 77 also belong to this class.

If 5 Be substitnted for ;;:. then

Py rr’;) o4 i L ap\? \ O
g o U by ete; 2O\
a7 iy, dda? =P ri_ﬁ/z_{—p fiy)’ e ,?"’\\17
s W
and (1) will take the form (,Q}‘.
S R
v Lo poy) =0 30

wirw.dbr hklar_y orgin_ .
'an equation of the (i — 1)th order betwepf'y and p which miay -
Possibly be solved for p.  Suppose tizat \1& solution is

O’ ‘g)
= f(zfl,
then the solution of (1) is '\'.:’."‘
Wy .
= c
\ Ayt
_ TSN
‘Ex. 1. ¢ ff_ W L
_ Solve Er? \ % =0
‘B . ‘\d‘,' dyi?
Ex. 2. bolve 'y_ty_9+(d ) =1
dwyz b v
JY 4 — 2 oo
5\‘?’01‘7e d’d (d’a‘) =ylogy
X .\
\P" 4. Bolve cgi+ 2? + 4(21) =0 by the method of this article,
dx

N

\:and by that of Art. 78

/

30 Equations in which ¥ appears in only two derivatives
Whose orders differ by two. The typl%l form of these equar :

tons is :
ar g )
f( mg::r dx” :zf )’_ " o o ()
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ty the dry by

n—

If ¢ be substituted for ¢ G then 5 0= g and {13 becomes
S (ﬂg: ) x) =0
N N '21;‘ R “\‘
from which ¢, that is, T may be found. Suppose t-hqiiﬂlﬁ
solution is \ N/
f?“_zif N
q‘l’l 2T QS( )’ # 2p)
L W
then y oY Bl bbaulibhyrthergusthod of sucéedsive integration
shown in Art. 76. N 3
' Ex 1. Solve — M (r .= 0 both by t.lncrmp\t.hod and that of Chap. VL.
*Ex. 2. Solve 3—;{ = cfg;_ aex bnj;& by this method and that of '

Chap. VL

S 2

fl‘*y fl‘? ~ N :
o
8l. Equations uﬁwhich ] appears in only two derwatwes

whose orders ﬂzﬁe}by unity. The fypical form of these equa-
tionsg is

N/ "y vll
O fde w):O. @

da?’ da, i

- «Bx. 8. Bolye :r?

.‘“\

Ii} be substituged fcu i, the en . d y = fi_q.‘ and (1) hu'omeq |
»
."\ S

> dq
- . f(d“c o )‘_ 0,

an .equation of the first order between g and ;. its solution
- will give the value of ¢ in terms of x.  Suppose that the solu
tion is .
o d“—“fq o
q_dxu—f—FU:)s L
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'then, from this melation, by successive mteglatlon, the vaAue of

y ean he deduced.

2y r'll.l
«Ex 1.0 Salve 2000

d,r: th
On puiting ¢ {or i?‘r , this hecones a
i N
2 AN
(if)' . . R \,,.
g =% N
fr «
ntegrating, i = a' d:r, =l ¢%; ..f 3

0
Integrating again, wp = {2V £ ¢ 4 2 log (T + Vihay %) + ez).

*
% 'Ez, 2. Solve ”fi::ﬁ [1+(@)2}’“}_“-’\fvf_dbt‘giihral'y,org‘jn

dx &
'Ex. 8. Solve w_;}r ” + dy =G W .’N.‘
det T dn T Y
‘Ex. 4. Solve Ty dy =2 A\
R ard " j’.. v

il & |
~t 82 Integration of linear equatmns Ain series. When an equa.- :
tion belongs to a fmm “Wwhich cannot be solved by any of the
methods lLifherto dmcussed rocourse may be had to finding
& convergent sexjes \mnged aceording to powers of the inde-
pendent variablewhich will approXunately express the value

_of the deme}ent variable. For the purpeses of this article
it is ass TR {1hiat snch a series can be obtained.*

"SU-IX"E that the linear equatmn
dy
PR : v et
\;cafl have » solution of the form
Y= dpr o A A b A
Wwhere the second member is a finite sum or a cl:mvel’f:.'”"a‘nt seriss

T some value or values of @ Concerning this series. thiee™
“hmg‘% wust beé known: namely, the initial term, t_he relation:

+ ]dﬂ;“_] + + P"J 0
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between the exponents of @, aud tlic relation between the
cosflicients.

The following examples show how these things can be
determined : *

s Py L,

. 1. —a) = = =0. 1
Ex. 1. Solve {z z)d:n*+4dx+2y 0 (\)
The substitusion of x™ for y in the firat member gives \' \~>

mim -+ a1 —m — 2)(m 4 1)2m. A

This shows thai, in the ease of a series in ascending powe;;é ol which
is a solution of (1}, the difference between the successiyegkponents of

z 1% unity. @W@_qﬁmgﬁpﬁyggp%}\qcessim exXpoié niﬁ;\nay he denoted

by &) IHence, the reguired series lids the formn
Agem 4+ Agentl g o b A, gl :h';Qc"“*' + )]
The substitution of (8) for y in the first, mexﬁh& of {1) gives

Apm(m 4+ 3=l (A (m + 1) (m A 1) —Jo(-ni — 2 (m L 13]um e (;1)
!

[Ac(m 4 ry(m - v+ 3) — Aey(m % = 3} (m o) et oo

When (3) is a solution of (1),{lie expression (4) is identically equal
to zero, und the coefficient of gach power of x therein is equal to zero.
Therefore, on equating thescoefficients of zs~! and amir—1 to vero, it
follows that w\‘ r_3
- m:(\,i:m}:.—3 ‘5[4,:&_’.._'__.'_;1 1 (5}

X\ ' mr+8

The results (FyBiye the initial exponcnts of x and the relation between
successive caetfigiénis in the series which satisty (1). Hence, the reguired
series are qmﬁpi‘etely determined,

For z’ﬁ,‘;d_, _r=3 4 Hence the corresponding series s *
j}\\“ :+§ Ag(1 — Fx 4 Jrxt)
Tha}l A1:1+350=“%Am For m=—3, Ar:-‘r_bltr—l'
A -
4 Aﬂ‘—'&;—;‘—g‘ A‘L:jlgﬂu‘ ‘Fhen Ay =~ § Ag, Ae = 10 Ap,
3 9 Ag =10 dg, Ag =5 Ap
Ae=5rs A=l Ag = — Ao, Ay Ag= - =0,
Ag= -3 Aa=0 Hence the corresponding series i3
4+3 ' Age3(1 —Bx + 1022 — 1048
Ag=Ag = .. =D, + 5zt — x).

—

* Note I, containg a gencral digenssion 1o be read afier Exs, 1, 4
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ly ix an arbitrary constant, hence a solution

In each of these =rvivs, .

of (1} 15
y=AQ —du 4+ o+ Bt —ba + 1022 — 1029 + 5t — 25}, (6)

This is & general =oluiivn, sinee it contains tweo arbitrary consgtants.

The expression (2 also shows that, in the case of a series in descend-
ing powers of & whicl is a solntion of (1), the difference between the
sneeessive exponents ix -- 1. Such a series has the form Y

NS ©
Agrm £ Auen=d 4o Ayt damer 4o N

Substitution of this i the first mewnber of (1) gives ~~( ™
={m — 2 (i + DiAgem 4 [ dom(m 4 3) — dymi{m -—'3)}\7:}“—1 o+ e

A m— L D~ 1 4 4) — 4 — T 2(% ", —Irl-,!; Djem-r+ .
dulibrar 01’8 in

On equating the cocflicionts of «», amr 1o zerdy }k Tollows tha

iy

m-—? +4A"‘1

m=%2 m=-1, 4d.=
H » r= 1.*-:1-—2

On dedueing thie serjes con'espondi’n:g to these values of m in the
manner shown above, it will be fougfMbat a general solution of (1) is
V=41 Bl 10 22— 10 p—B 5 gt a5)  Br-H1~fa 14 a9,
The first of these series is@le same as the second in {6) ahove.
Ve .
v L AN . .
The proeedure‘w}}en the second member of (1) is not zerg

will be made clehe’in the first example below.
p

Bz, 2. Int.ﬁg‘rate (1) xid y+xd 4y= =1,
X

N\
Firg \ﬁur] the complementary function. The substitution of am for ¥
lo the‘ﬁrst member gives

A (2y m(m — D2 4+ {m + 1)‘5"‘
3‘57h?nce $=—2, and m=0 or 1.
The substitntion of E”Aﬂm—ﬁf for y gives
— —
[0~ 20 (m - 27— 1) Aan—tr42 4 (e — 27 + AR ] =0
The coefficient, of xm—%+¢ must vanish ; sherefore
s~ 25) (1 — 27 - 1) 4o+ (0 — 27 F Badpr =D
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3

hence 3 4,= W2

- PR

Tm—2r)(m—2r 1} Arts
whiel is the relation between the coefficienis.

4 _ _ 2y
Form =0, A= Zmr@r—}—l)d‘ 1;
1
hence A= - 7.3 Ay,
1 1 \
A:—A :—-_A 2%
Ty T TR A
\o
.As—-—Ag —17—:?.;‘1(), ete. \\\
WWW dbrauhbré‘i‘y org.in R
the corresponding series is \\;
l—ia:‘g-——l—x—“— j_s_
3! 61 7 ! N » 3
2y — 4 3 o
Form=1 A, = e :
= 2r(2r _‘1) v
— 4
il 4 A =—4
£10e 1= 2(?—?3 ‘}. Ay

QO
Ao =Y

S

\./):‘

7™

- N4

and 4s, 4,, - are, Bﬁsb equal to zero; the series in thiz case is flnite,
being PR ”;

NG . P

”" . N . »n

$
Hencesthe complementary function is

'.‘\” e Lo 1.8 oy
K\ A(l 313: 513: —7_1); —-..-)_]_B((L..—;)

m=—58; and hence 4y = .
For m = — §; the relation (8) between the coefficients begomes -
A, = 2y

EriHEr a1
]
beance A; =-5_'-_6 Aoy Ag =

_.4 4
5.7.6.8° TET.9.6.8-10

Ayy

\/ In order to find the particular Integral, substitute dgam for iy then
/ must m(m — 1} dee* 2 = 5~1; comparison of the exponents shows that
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and the particular fwiegral is

xR 2 2.4
e R A SRy U U
LG SR oL )
. -y 2 2-4
€ =0 = a2 o T ap=d sea b
that s, i kl-f—m,a: -+ a1 =t )
Ex. 3. Sl?]ﬂow by the method of integration in series, that the ger :-‘.ml
. & . . ¢\
solntian of “_&% + ¥ =015 s cosx 4+ Fsinzx, e\
N
Bx 4 2t p 2L W s
X 4 (2 4 1'JFI\Gg+de, 2y = 0. R R
'y ey (Y
Ex. 5 g% __ ¢ 2Ty e 2, A\
g E gt -y =2 O
N www.dbraulibrary.org.in
Ex. 6 (1— )07 _o,% =0. N\
{1-« )d.'):'i et n(n + Ly 0'.‘.\\

83. Equations of Legendre, Bessel, Rjecatd, and the hypergeometric
series.®* A filler discussion of integmtiop'in' series than is here attempted
is heyond the lwits of an iutmductoijr"course in differential eguations.
The purpose of Art. 82 has mevelyWeen to give the student a little idea
Of & method which is of wide application ; and which is used in solving

' four very important equationsghat often ccour in investigations in applied

. mathematics, . - the equatio{}; of Riceati, Bessel, Legendre, and the hyper-
geometric serics, O )
Tohnson's Diif't’--i'é-:ﬁw;{}i Eguations, Arts. 171-180, discusses the methods

10 be followed wlhen two roots of (63 Art. 82, become equal, the corre-

sponding serics fhel being identical ; and when two of the roots differ by
& multiple off & ¥ne series then being included in the other ; and wheo a -
Ooeﬂcicienli ANs infinite.

The (%@t.’i&ms referred to above, and references to be consulted con-
‘ernighghem, are as follows ;

Ly i .
‘\.'I.Le‘(j\‘ﬁ!t’h'(‘-'s euation s

2y ti"ﬁ _
. | Y Dy =08
(1 r.r:,)d_m2 2xd:£+ aln + Dy : o

* In connaction with this article, the student is advised_to read W. E.

Byerly, Fourier's Series and Spherival Harmonits, Arts, 14-18.

f Adrien Marie Legendre (1752-1893) was the authior of Elements of
‘Beometry, published in 1794, the modern rival of Ruclid. He is noted
for his vesearches in Elliptic Functions and Theory of Numbers. He

- P88 the crestor, with Laplace, of Spherical Harmonics. :
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or . {(1—x9) }—f nln+ Dy =0,
where n is a constant, generally a positive integer. See Ex. 5, Art. 82

{Rorsyth, Diff. Eg.Arts, 89-08; Johuson, Diff. K., Arts, 222-226;
Byerly, 6'1'5171';?3 Series and § Nﬁﬁpmcal Harmanics, Arvle, 9, 10, 13 {c).
16,-18 (e), and Chap. V., pp. 144-194; Byerly, Harmonic i-unctiom

(Merriman and Woodward, Higher Mﬁthmuatw\ Ehap, V.3, Ax‘té‘«i
12-17))

O
* Bessel's equntion is » ".( N
? ’\ 4
2 T ta +(o~2 — oty = 0, NN
WO dbrauhbralfzy y
in’ which n4s nkually an integer. x.\\: '

(Forsyth, Diff. Eg., Arts, 100-107 ; Jolmsc}h. Diff. Eg., Arts. 215-221;
Byerly, Fourier's Sevies, etc., Arts. 11710 18 (d), and Chap. VIL, 1P
219-233 ; Byerly, Harmonic Funetigig, Arts. 5, 19-28 of Chap. V.in
Higher Mathematms Gray and Mh:thews, Bessel Functions and ther
Applications to Physics; Todhpmj.ér, Laplace’s, Lamé's, and Bessel's
Funetions.) NN
A\ DS
ne _y 2 — ppm
(O Er =
to which form ~i§~ reducible the equation x a_ ay + byt = eah The

\ £7% . dx nt2a
latter equafieniis integrable in finite terms when n=2a, or when ——~

2n
isa 13031\{'.1}8 integer. Riecati’s equation can be reduced to a linear form;

=0.

T Riccati’s equation is

(Forsyth Diff. Eq., Arts. 108411 ; Johnson, Dif Eq., Arls. 204-214,
>) Glaisher, Memoir in Phil. i’mm R 1881 pp. T50-828.) -
,; .
* Frederick Wilkelm Bessel] - (1784 -1846) may be regarded as the
founder of modern practieal asironomy. In 1824, in connection with
a problem in orhiial motlon, he introduced the funcuon-, called by b
name which appear in the mtegra}s of this equamom
t Jacopo Franceseo, Count Ricoati (1676-1754) is best known in oo%

nection With this equation, which was published in 1724, He integt “ted
it for some special cases,
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* The differential eqpuaiion of the Aypergeonetric series is

@y v—isiledy a8,
- d:czﬂ x(]___x) il :c(l—:c ¥ =\

This equation bas the hypergeometric series

ppeiBy e@rDB@EY o R
1oy 1-2-9-v+1 2 AN

ssually denoted by F(a, 8, 7, 2), for one of its particular integral{;';\ana
bas o aet of 24 puarticular integrals, each of whick containg a;)}ypérgeo-
Inetric series. !

(Forsyth, I, £y., Arts. 113-134 ; Johnson, IHfF. E@.,{thf;. 181-203.)

www.d braulibra;‘y,org.ln_
EXAMPLES ON CHAPTER VNI

i -”VI/ Show that the following equation is e:ga:cﬁxa’rid find a first integral,

» { ay\ Py i y
RN e Sl Il ) & E - . —" =0 *
\¥' v 2w ax>.-;zx= e+ “'i).(dx) Pty
g BY___ @ @y AN
dr? wigd — ) de a{af ezt i .

ay N @y L d
8. (1+x+xi)£+£wﬁx)@-g+6&g=0.
+8 3

. T S - a2 ; Y a'
4 Find a lirst 1{1t}g\rabof ,cf‘% + 4:c?d—x',%—'r xle? + 2)c_i'.'c + 8y =32

» ity 2% -
3. LY S
do % ‘Eﬂ =0

5l 2’ {fi_;\):'*\“ éﬂg{:?;{(@)z.;_QE(‘py)?li_

w, Yt dax a2}l

N o\

‘.‘:This is also called the Gaussian equgtion, and the series, the Gaussian

. {(Saries, after Karl Friedrich Gauss (1777-1855), who is regarded as one of

3 the greatest mathematicians of the nineteenth century. He is especially
noted for his invention of a new method for calcuiating orbits, and for

his researches in the Theory of Numbers, It was Euler (see fdvinote,

P 64) who discovered the series and set forth-its differential equation ;

but Ganss made important investigations concerning the series, a.de

showed that the ordinary algebraic, trigonometrical, and exponential
%eries can be represented by it. (For illustrations of the last remark,

see Johnson, Differential Eguations, Ex. 1, p. 220.)
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%

i

i

4 dy  dy (JH) =0. ‘n/ 10. =in r{ ?’! - PpR J'.J"{ + Qg;sinm:qfé
odae? T odr N\ it i 3
” 12 I iy oy {1
. N IR A sy g dr
% (d-e }(1.’!-':" « de 7 . 1L xr:’.’t"‘ JI!I"-""‘ W £
- g € W
Sl T A 5y = los g0 ke (7 KEW
14 I‘?} 2 . - dty g o f 3
. -_sm x - Cit = 0
det o ds \\
18. L iy’ gbmllb‘gal&r crhg Huoy n = B 2o,
\. .
VIR, ) T 2y dr; & AT,
. BT sm%:t&i—:Qy.- . 18 @ \ 15 42
_,f"{:r_').

~920. Find three indapendent first 1n§evrﬁis uf

4

-

rbu a2y Woae P &
7. (@ —2) AR RUE SRS B A L LY .

IT“

X

.".5_3233"_ 2 2(dy * :” .
Cae T TR g ) (Y ‘.

ccnnected by the eguations
A

Note for Are. 5. Adhet intepral of a differential Lquation is 1:1”
equation deduced fmm ¥ of an order lower by unity than that of the -
original equation a.nck\onta,mmﬂ an "arblt.rar) constant. :
0‘ y

. Firat, mtegrals o.f

2 AN/
(gx \“gl A, gz.cosx-bymn:r:B —%sinm+ yeosu= 0

'® (’;—'m-—ycot(m-i-a)

cI‘\B*esm ate not all independent, tor the four consta.nts A, -Ba <, are:

. ;
B=vActsa, (f=+vAsinae.

The elimination’ of d—i"; from the se,cond and third of these m'regi‘aia

the soluti
gives the solution y = Bsinep Ocosm

and the elimination from the first and fourth gives anothe: form of the
golution, namel‘y, y= Asin (x + ). '
-In general, if independent first integrals equal in number to the Of‘lﬁﬁ

of the equation have been obtained, all the differential wofﬁments can bﬂ
eliminated f:rom them 80 as to lea.ve the primitive,
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* : CHADPTER IX.

T I s AR TR

EQUATIONS OF THE SECOND CRDER. ;’\

84. There ave ather methods of solution, ditferent flfmﬁ"those
© shown in the last €hree chapters, which are appli{!ﬁﬁ‘le to some
squations of the sccond order; Avw &8kSgulibiely dafen up

"with an exposition of three of these methods, )
- If a differential equation is pot in a ot to which auy of
-~ the methods wlreadty deseribed apply; i iy be pUSSlb13 o PUt
ftin sueh w forn, The very nnpmtfmt hansfmmatwns ‘of,
- equation that can he effected by chEdging the dependent orgié;
~ Independent variable will he disgtissed in Arts. 90-92. Aat %
« Wil contain a synopsis of all* the methods considered Hip:ioi
- that point whicl may bedmployed in sclving equations UN;hze
~ seeond order. X4 N )

LA .
85. The complebs, solution in terms of a kmown integs

theorem of axdaly Din portance relating to the linear diffeidh -
- fquation of,{iw second order, is the following: -
. If ap {mbegral included in the complementat; fuugm_qn of
| such R’%Lquaﬁmn be known, the complete solutioh mn be
= eXP“t‘Wed m terms of the known integral.
(Bippose that ; ¥ =, 13 a known integral in the complementa.ry
\full(ltlon of .

EE__."’L’ Pﬂ+'Qy=X; o (1) l

ﬂlen the complete solution of (1) can be determined in t.erms )

. ¥=yw




(o)

3
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be another solution of (1); » will now be determined. On
gubstituting 40 for ¥ in (1), # will become

B : i
2 dyndn X, 2/
da:2+( " d;t:)d-.v " @ ,‘-
since, by hypothesis, x’:\'.‘f
d A\
fi'yl h !y Qu=0. O
N

On putting p for @ {2) becomes
www.dbr auhbral org.in
y- ( &n, c?fh) X (3}\/
+ - Frg— 3
n dx ‘} -
and thls equation, belng lincar and® Qf the fitst order, can be
solved for p. On using the msthof[ of Art. 20, the solutin

1s found to be

:@ B -l ‘(’HIPJJI.J(*P&:X(-’J.
da l"“ Wi

whence, mtcgmtmg,&

= 0 + c —IPJ e---‘[pdx :,th'NrX (dﬁ,‘)g.
\<&
Therefors enother solution of (1) is

x\‘

ﬁ&” =&h + nylf

. et o e (day, @)
2 dl’"%%f“g’:z—‘f?he X (dx)

e e S

This includes the given solution y = y,; and, sinee if cot-
tains two arbitrary constants, it is the complete qolutwn :
From the form of the solution (), it is evident that_thﬁ "

. -fre
second part of the complementary function is » %E’ a#
1

and that the particular integral is 4, f i{:ﬂ f yyeh i X (Y
] . h
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86. Relation between the mtegrals It is ea,sﬂy shown that
Fy=3, y=1u be two mdependent integrals of

(F .-,r Qy 0
I then # dEj — 2y dyt — Ce—f}’d:_

i el ¢ '\:\’

(Bee Forsytli's D Eyg., Art. 85 ; Johnsen's Dif, Eg., Art. 147. § '

It may also be remarked in passing, that the deductwn of

. (3) Art. 85 from (19, when an integral of the latter 1y known,

is an example of the theorem: that, if one or 5¢weral indepen-

- dent integrals of o linear equation lmvkm@bnglﬂim%%ﬁbﬁﬁ ite

_equation can be lowered by a number eg@alvto the number
of the known integrals. \\

{8ee Forayll’s i Ey., Arts, 41, 76, "7.)’ N

87, To find the solution by mspectlon. Since the complete
infegral of (1) Art. 85 can belfound if one integral in i5

tomplementary function be kithwn, it is generally worth while
W try whether an 111re-frlal W the latter can he determined by
ingpertion.

Ex. 1, Solve r.-‘IE "".' _H}}.\ )

f\&lﬂ‘e, the sum, 4F ;he aoefficients being zero, e* is obviously a solution of

g\’ o’ d_; Y
& +(1 €)Y

S‘ll}ii\@lon of ve= for y in the original equation gives

\\ xﬂﬂ+(1+x>&£:1’
Abis, on substi teting p for E%, becomes

dp
ap =1,
wg +(L+ 2P

3linear equation of the firet order. Its solution i

dv e, 1
== —t
PR e T
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hence n=lngx- ¢ {:r =l el e

- and therefore the complete solutivn is

.
y=eloge+ :-.y:-"j & e onda]-raen

Equaiion {4} Art. 83 might have been used i suhstitution formula
but it 18 better to work out each example by the saue general method

by which (4} was itself derived. (N
AN
2y dy - g
Tix. 2. Solve e xﬁa + oy = . N

[ere, ¥ = x is obviously a solution when the secongd jipmber is T,
A solwtiont . dfraftkibtar fooug. iy an inspection (RhS Lerme of lowen
order in the equation.] ) ;

i .y S

Ex. 3. Solve (3~ ) 5— (9~ 42} f{ﬁ;} Buty =0

Ex. 4 Solvea2®¥ 2% _ 0 gpv‘p,;{ that % 4L 1 one integrl 3
ic® dz K. %

Sup-

"

88. The solution found by‘means of operational factors.
pose that the linear equatié;fof the second order

A2y dy T
BaethgrPo=5

is expressed iI}}h\e ;form FDy=X.

// ' &01‘13tipiéﬁ F(D) can be resolved into a product of 7o st
tors Fy(D)rand F(D), such that, when Fi(D) operates upo !
andshen Fi(D} operates upon the result of this operatiol.ls-‘thg

saihe result is obtained as when F{D) operates upon ¥ Th]i
w¥tay be expressed symbelically,} o
N iy .' !q
) - J(Dyy = Fo ViR Dyt
or simply,  J(DYy = F(D)P{ Dy

it being understood that the operations indicated in the secon

member of the last equation are made in order from right f
left. _Factprs of this kind have already been employed it dea]
ing with linear equations with constant coefficients, and wit




e

~the solnlion found in the last article. S

% Bz '3 Solve 3:!,&@2_5’.“3_53;2)@"5—49:0‘ o

§88.] SOLUTION IFOUND BY FACTORING. 118

the homogcneous llncm‘ equatwns, Arig, 53, 55, 67, ete.  With

the exeeption of the classes of eguations just mentioned, the

factors are generally not commusative ; this can be verified in

the caze of the exawples below,

SIf one of the integrals be kuown, its correspending factor 1sy
known, und 1lie second factor can be determined by means,of
the equation and 1he known factor, Tor instance, if y =N .
an integral of the given equation, then (D — 1)y is tll&CUlle-

sponding factor: if ¥y ==z be an integral, (s} — 1)‘1‘ is the

corresponding fuctor. The following example wﬂi make the

method-of procedure elear, "'\
www_dbraulibr’ar_y.ot'g,in
} ; N
w,‘c. 1. =Solve ,’.-_E ] :1% — ¥ = (}”’ ,'\\w
£ \ W

This equation, which is Ex. 1, Art. 8: ‘when written in the symbohc
form, i )
[ed® 4+ (1 — x}D‘w 1}_?; & w (1)

on wsing sywholic factors, it hecomoq“
(9-12 ])(D——])y—e” (2)
" [These factors are not.@ﬁmmutatn@, for (D —1}(xDP + 1)y on expan- {

.| ston gives {wmFi? - (2 'c‘}l} - 11y].

Let O (D~ Ty=r ' (3}_“

3-116 {2y bet,mues Y&D -y =y Wh&llc& v = C“"l + erxvl
.Sub:.utw}bn of tlis value of @ in (%) g“eS
= -1 gty
‘ \,\ (Fr—- Dy =ce 4+

-\W?{e’mﬁ‘ on integrating, y = ¢1e* + ce* ‘ve—x;\:-lﬂx -+ = log %,

Ex. 2. Solve Ex, 3, Art, 87, by this method.

. Solve 6.2:2w @+6x- Gx“)—-‘iy 0. )
I % o ' O
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89. Solution found by means of two first integrals, It fol.

lows, from a statement made in Art. 75, that a linear equation -
of the second order has two first integrals of the first order. *

. ey -
if these integrals be kmown, then d—‘z can be eliminated be

tween them; the relation thus found between f‘ and ¥ will e

a solution of the original equation. R \):

Another method of solntion fhat can be used n the dage of :
the linear equalion of the second order is the * preflod of
variation of parameters.”* As most of the equatiohs solvable

by it are golvable in other ways, and as it iS"‘iﬁther long, it
will not\'ﬁgwgi%gﬁaﬂéi‘%?ar{’.‘b%ég;}ﬁhnson’s DiffNBy., Arts, 90, $1;

Forsyth’s Diff Eq., Arts. 65-67.) P N\
2y 2 2 'S ]
Lx. Solve g? (g;) =14 (gj “by mg:jgns of the first integrals.
On puiting %y =p, s =(?I?’ :m& iﬁtegra.t-in", there appears a fst
. dx i dx’ (O =
integral N
™} T Fet
pAVYItpi=e .,
On substituting for %g\s equivalent expression p g{l: , and integrating

another first integrai\g\ohtained,

oN e =(y + e)? - ol
\X .
The el%n\ina’tion of p between these first integrals gives the solution

~& ]
,§~ } ¥+ e =@ cosh 5T,
S

;"\"I '90. Transformation of the. equation by changing the dependent i':

%} “yariable, Sometimes an equation can be transformed into an

‘integrable type by changing the dependent variable. If any

linear equation of the second order,

@+Pd_a}+ Qyzxs

S

* Thiz method is due to Lagrange.
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" be taken, and ¢ be substituted for v therein, 3 being some.
functmn of @, (1) will be transformed into

) > o E.%h dv 1 d?yl dJl X o
CNEIET IRV T UPANE S

e jde g\ dat
‘which has v for its dependent variable. AV
€ N\
" This equation may be written _ e
i P - ‘
L PO Q= X S G
" i
m\
2dy, 7 \ N
wh =24, 4
ere e v de W dbl\gllbl'al ¥.org. 1;1( )
1/, (‘Z’r‘{
and S 1 1 ) 5
Q= y1<l“k!}‘ ‘4'@‘71) . ( )

Any value desired can be .a.sgzgned to P or §); by means of a
proper choice of y,. 'Thus, Q, will be zero if y; be chosen so

that
. i *h d’h

rh:‘* +QJ1-O

this is what was d({m ’iﬁ Art, 85.
Again, P, thd oefficient of the first derivative in (3), can

have any arbxfrm\r value assigned to it; but then y must be
thosen so xé}. o satisfy (4); that is,

"’\\s..' th== egj(pl—P}dt_ (6)
9L Removal of the first derivative. In particular, it follows. s
yvrom (4) or (6) Art. 90 that P, is zero _

it ,g_._,_e:}fl“d-r

On substituting this value of g, in the coefficient of ¢ in (23

Art. 90, this coefficient becomes
o192 _1px

4

L .
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Thpretme the dlfferentml equation (1 Art. 90 of t]_u, becond. _
order is transformed into a differcntial equation not containing
the first derivative, by substituting

ve iF for y;

and the transformed equation is ) '\_\\,
] L
— Als ‘.2. ot (1) :
’ (4P »
‘where @) =Q—4-——L1F, and X, = X¢ I”‘g‘

N Y=g

\-‘..

W dbralﬂibl "ary.org.in

The new equation (]} may happen to, Qs«m sily integrable
Transforming (1) Art. 90 into the fmm‘Q§ is ¢alled # removing
the first derivative.” '[-'_L‘he student Bliedld memorise the above
values of the new @, and X, in tfeimq of £ ¢, X, for then he
can immediately write down the new equation in #, without
the labour of making the bub'stltutlon in the origi na,l equation
and reducing.

It may be 1emarke@ Tn passing that this removal of ihe
term next to the seeéndl derivative is merely an example of the
general theorem \bl}alt the coefficient of the term of (n — L)#
order in a hne&r equatmn

" dy

“\"\ Fla‘“+ ]dq," 1+ e+ Ly=2X,

% femov ed by substitating o for Y, where

’o

—IPpiJ:

The reader can easily verify this by making the substitution
{Bee Forsyt-h’s Dif. Eq., Art. 425

Ex. 1. Solve d*ly_,_ 1 dy ( i ,___L__ﬁ). =0
di? ﬁdx :

gk
i,

_1 1 : .
Here P =z 5 @= L d ience y, = e} = €



T§92) CHANGE OF TOE !NDEP}"\"}JF?VT VARIABLE. 117

©If the seconed terim Bue removed,

P . i]
QlZQ—izi—iP‘:’-““x;;

. and hence the transfovimed equation is

X

‘_3'“_’;’__?_”:0,

det a? O\
the solution of wihich is LM%
, N\
¢ = oz 4 ('—_f % \J
. o N
Henee the general solution of the given equation is
. 2*Z>
&/
P 2.3 (( 2 {.'22 2 «w‘\
W cf rau]lhrar_y org.in
. 2y dy Y
Ex. 2. Soive 4 :::2{-3-'{-”2-;- 49:1 —|—(.a:3 + 6zt + {j'p\ A,
¥ \ 4

124
E_3‘11.[..._ i
X Solyo o t.anxd + Ly =0, O
Px. 4. Solve a22Y 2t w)--'y—q-"(:'? +2z4+2y=0
Jxd di

N
N

92. Transformation of the'equation by changing the independent
sariable. An equation gad sometimes be transformed inte an

integrable form b AL ﬁzﬁ}ginrf the independent variable.
(f?} _!__ Q =X (l)

(F){

Buppose Lhat < N\ + P

I8 any Yineah equatlon of the sgcond order, and that the inde-
Pendent Xauabie is to be changed from & to z, there being
someg\ En relution, z = f{z), connecting © and 2.

s Ay d y dz By dyfdz P Ay
\ u\z%me e d M qet T dP \de dz da”
{1} becomes :i:g + PL -l— QY = Xn
&, pdz ' :
| p < X
where P, — da da’ Q) = ‘E%‘Tv and X, = '(dfzd_”
& @
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P, @, X, as just CXPlEbSed are fL'lllLth]lb of @; but ecan be
immediately expressed as functions of z by means of the rela
{ion conhecting z and =

Any arbitrary value can be given to I; but then 2z must
be so chosen that it satisfies the first of equations (8). In
particular, _Pl will be zero if

KN
dz . N\
+P -—0 that is, if z-—f ~§PdeL, S
diL‘z ! W
Again, the new ecefficient @, will be o constant, w’—“.,'l'ry wirtue
R W
of the seooRd AL SIRBARS 6208 o :
dz
caz(d ) €, that is, if a2 = [\(Q ri’a'
\\
iy 2dy
Ex. 1. Sol =0, N,
= Oved-‘+ el l-aﬁy 0 WV
Find 2, such that ( d/) i sglerr, z=4%
i xut ’ i

Change of the mdependent v&rxa.’ble fromie to z will now glive
N /
TR 02 . 9 A
and thig has for its s&{x{lb’ﬁ 4
y=.4e05z2 4 Bsinz

Hence the §qu}1t_)n of the given equation is

"\'"'Q : =¢ COSE g sin % : 1
“\; u 1 —+ g mx I .
:
1

u +4ycosr'c =10 ve

]}\2 Solve @—k cotm
AN

N d‘ dy

\ W 1" Sol A — 5

e 3;'3 4. Sulvearﬁp—+3xa i +g‘3y____l_

f : i 2

[',.‘; 33 Synopsis of methods of solviﬁg equations of the second order.”
4 article i3 merely a synopsis of all the methods djscussed
thus far in the book that are employed in the solution of equé
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* tions of the second order. Several of these methods may be
suitable for solving the same equation. The references are to
the chapters aud articles where the methods are described.
The student 1s advised to select a few eguations of the second
order from the articles referred to, and to solve each one in ‘
two or more different ways, O\

A\

L

An oguation of the second order may be QA
[{o) linear with constant coefficients, ICﬁap: VL};
(0] a homogeneous linear equation, - ol€hap. VIL]; _
{¢) an exact differential equation,w\fw‘dbrmﬁ{ 11;!355. 73;75, 76]; hYS
(@) an equation that does not directly coptain £ t?eﬁélrrfdent

variable, AV [Arts 76, 78] -

{e) an eynation that does not directly esntain the independent
varable, A [Arts. 77, T9];

P e P\ R
(7)) 1n the form Eé’g:f(y), N [Art. 771

- {9) an equation, one of whesd integrals is kuown or is easily
| fornd by inspectitry [Arts. 85, 871;

{®) factorable into s,y';'i%o]ic operators, {Art. 887;
() an equation of which two first integrals can be easily
found, [Art. 89];

- () an eq_ﬂﬂﬁdéﬁ’ that can be integrated in series. [Art. 827

2. ] L
If the“efuation is not in an integrable form, it may be put in
'Buclya\ orm, by : _

(“‘) 84 changing the dependent variable, that (1) the coefficient
0 of the first derivative will have an assigned value

/ S [Axt. 90];
or that (2) (in particalar), this coefficient will be zero

' [Axt. 9175

. 8 so changing the independent variahle, that (1) the equation

will be transformed into the linear form with constant g

coeflicients, or into the homoge_nemls linear f‘?'m_‘ L 71]

. - - [

g
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[Art 93]
EXAMPLES ON GHAPTER iX. \ \)
. &2y 2dy 2 ay 2y f o, 2 \“ S
I DL Wil A f . L 2 e =L
1.' dnToge ¥ v 3 At wt +| e (3)'"{ { :
diy | 24y If
o, Y + ny =0, "4 4w’ &* +y=0
da? .c\g, ic-.f dbrauhbrary org.in b‘” \
5. (x— ‘3)-——(4.r — 9) == + o —2yy=0, ¢ ‘k{gm“ a solution.
6 “1oau iy —0 ,~~,\“-
do? AN\
iy A - R
Tty =0r L
. ay AN ) et
J 8. W-—(Em — 1)— +(.c 1.;3;. =0, given that y = ez is a solution.
L
o2 -—.'r?)——-{- a‘,"—I—y u\sr(l and.
410. {zsin :c—]—co%a:)% £ e08 yT +y cos =0, of whieh y=x ls a soluticL
d By ey A ¥
11. + —2.1:—4—2 L, Ml T .
/ %’Z y=0 7
~ dy . N L
J —=— aﬁ— aly =0, of which y = cessv= js an integral.
! o — -'—f(:r)
\ Vi
%) dty ¥
14 mgd——ﬂx(l—.-:e’)d + 2(1 4+ @)y = ah
Sy ot
415 (a? ~— xﬂ) dﬁ - fi.%-{-Ey :_0_;
"16

&] l 5 : |
i dy 2 - o
K 7. x“y—dxg 4 (x— - y) =0. ..- h 13. .rid ¥ 5+ 2 xR i + '1‘12'5 =4

or that (2) the coefficient of the first derivalive 1'.111 ha»e
an asmgne(l value, and, in particular, the vaiue zero

LArt 927;

ot that (3} the coefficient of the variable will have an as-

signed value, and, in particular, be a constant '

. T 2.
< )dmu-l- Y+ gty = 0. 18 yda'ﬂ+(2x +1=0

.
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x

CHAPTER X7 ,\'
GEOMETRICAL AND PHYSICAL APPLICATIQNS

94 Chapter V. was devoted to geometrical a (l physmal

-applieattons; but the choice of Problems fc for thatchapter was
restricted by the condition that a dljtelen m ml{fﬁﬁ) ROt an
order hlg‘hel thar the first should not hef t?eedpd in determin-

: mg their solution. The practical prablﬁub now to he giverw ,

“are of the same general character ast (thoss already set; but in
order to obtain their solution, equ&tlons of orders highez than
the first may be required. %

{
~

95. Geometfm;.l Probleits, “'The following tan be added to
the geometrical prmmplbs and formulee given'in Art. 42.
The radins of Lm{ﬁmre in rectangular co- -ordinates is

\ i +C§§* }%

\r"}" da?

\

N .
If\the normal be always drawn towards the s-axis, both i6

-@ndthe rading of curvature at any point on the eurve are
K_\‘hawll in the same direction when ¥ and % at the .point are

Opposite in sign, and they are drawn in opposite ‘dil_’ectic_ms

vhen y and ng agree in sign. . Thig will be apparent on draw-' .

”18 four curves, ane concave upward and one concave dowﬁ
ward, above the a:-ax;s, and two similar ones below ]

.

.’.
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Ex. Tind the equation of the curve for any point of which the second '
derivative of the ordinate is inversely proportional to the semi-cubical -
power of the praduct of the sum and difference of the abscissa and a eon-
stant length @ ; determine the curve so that it will eut the y-axis at right
angles, and the z-axis at a distance ¢ from the origin. )

The first condition is expressed by either of the equations

2 2 2, 2 2\, N
B B wmaly. 2 L
(@ — ¥y At (g2 — iyl S
Integrating the first equation, : R ~N
dy e x m'\ &
www.dbraulifgary. V.argim ~ + 4 \

hut, by the second COl‘ldlthlr, dh =0 when =0/ \mi henee o =@ this
gives R e

X

a oz ONY

dr T @ i g

2 "_"', —
Integrating, y=— %z\'/xﬁ Za? +o;
but, by the third condition, .0 when @ = , and hence ¢ = 0 ; therefore
the equation of the cuwwbduce.s to
R

\\ Bz - @fy? = a¥h,

the equation of ap hyperbola with transverse axis equal to 2, and COI‘J“

2 j2
gate axis egQaﬂl'to .
- @

'H ¢thé/second equation been taken, the equation of aun ellipsé
Todge® -«}\ 342 = g%*, would have been obtained.

N 96 Mechanical and physical problems. The following ean be

s

“added to the mechanical principles and formule given in Arb

48; s, v, %, y, 1, 6, t, have the same signification as before.

i’s

¥l = the acceleration of the moving particle, at any point in it
path.

dr h . .

a2 — the component of the acceleration parallel to the -axis-




- §08] MECHANICAL AND PUYSICAL APPLICATIONS. 123

s

@ (AN, (BN

di i dt*

&9 o . - .

(F: the angular aceeleration about a fixed point. '
' O\
The foree acting upon a particle is equal to the p10(111‘et of

the mass of the particle by the acceleration of the mntmn

of the particle due to the foree®
An attracting force causes negative :mvelm-a%ﬂm, and a re-

pelling force canses positive aﬂ*elemh.mmdbf'aﬁ}mml@}ﬁﬂopé fgree
.be taken as origin. P ol

d"'yz the eamponent of the acceleration parallel to the y-axis,

&

Ex. 1. Find the distance passed over by}a moving point when its
aseeloration is directly proportional to itg\distance from a fixed point,
the acecleration being directed towardb the point from which distance

fs measured. N

Here

Using the method of Arn\“ i3,
Ngds dis__ o fmd*

at dit dt
Whence (@)2 = k{a® — %),
AN/ at
.Wl_lere kﬂqiié:?}rf\'reniently represents the constant of integration.
H?“}““ B = e
o Vi s
\ ?ﬁtégra.ging, sm"l =ki+b;
hence s =agin (k+ b).

Alse, s can be found directly, without finding ‘i: by the method in
Chap. V1. The equation may be writien
(D + D)3 =0

-

—_—
¥ A particular choice of units is presupposed in this statetnent.
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hence 8 == gy it kE - cycoske s

that is, " s=asin (k4 b)Y,
as above,

¥x. 2 Tn the case of the simple pendulum of length {, the eguation
conmecting the aseeleration due to gravity and the angh: 8 ihrougl which
the pendulum swings is

N ¢
28\ A
3% A\

g = '\
Pt 0=0 O

when ¢ is small, Determine the time of an oszcillation. ,,'( ”"‘: ’

. &8 LY
Since www.dbraulibrary@'ﬁ'.%‘? =0, ¥ \

= & CO& ‘\/gf + ¢a :aurvx

Let 4 = #y and 9 _ o when t=10; applymg tiese condilions, ¢ = fe
£g = 0, anid benes ¢ L
g
fo

» —_—

which iz the time of swmg Ironi 6‘0 to 8, I #=—b, i=T \E henee
the time of a complete ospﬂTaLmn from @ to — & and back again is 2 w'\l-

N\

( JEXAMPLES ON CHAPTER X.

= 00(:05\|gr tha.tls t-—1\l cosI

1. Determi.’ng, the carve in which the curvature is constant and equal
to k. \"

2. l{ewrmme the curve whose radins of corvature is egual o the
normﬁ and in the opposite dlrectmn

»\ 3 Determine the corve whose radius of curvature is cqu‘ll to the
\ wlormal and in the same direction.
4. Determine the eurve whose radius of curvature is equal to twice the
normal and in the opposite direction.

5. Find the curve whose radins of cwrvature is double the normal
and in the same direction.

8. Determine the curve whose radius of eurvature varies as the cul®
of the normal, .

i
|
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%, Find the eurve whose radins of eurvature varies inversely as the
abgeisga,

8 Tind the distanee passed over by & moving particls when its
acccleration is dircetly proporiional to it distance from a fixed point,

the aceclerntion heing directed away from the point from which distance
is measured.

9. Find the (listance passcd over by a patticle whose accelemt-iop.\is\
eonstant and esgzab to @, wg being the initial velocity, and g the 1rthal
distance of the particle {rom ihe point whenee distance is measared.™

10. Find e distance passed over by a particle when the “a.éﬁé‘ieration
is inversely proportional to the sguara of the dislance fromoagﬁxed point.

11, Find the distance passed over by a body falliug fronl rest, assum-
ing that the resistauce of the alr Is pr&)‘gﬁﬁ&ﬁr%ﬂliﬁﬁaﬁ‘mdh the
Tebocity, o\ J

12, The acceleration of & moving '[JELI‘tiC]E.{Sﬁ%ﬁg proportional to the
cube of the velocity and negative, find the fistance passed over in time £,
the initial veloeity huing @, and the dispzﬁm’e Teing measured from the
position of the particle at the time £ :*(3 .

13, The relation betwien the S‘I;lél.ﬁ horizontal deflection # @
magnet under the aetlon of the esarth’s magnesic ficld is

f a bar

I - T e

128

' :é St M =0, o

Where 4 iz the momBibhol inertia of the magnet aboub the axis, M the
maguetie moment g, the magnet, and H the horizontal component of the
intensity of tuesfield due to the warth, Find the time of a complete
vibration. £\ :

14 In tli}(“za,fse of & stretched elastic string, which Las one end fixed

, end a\;@m‘de of mass m attached to the other end, the equation of
meotidin NS

RN 8 iy

N m o e {s— 1}

and e its elongation due to

y“here ! iz the natutal length of the string,
pnstanis 80 that s = % at

aweizht mp, Find s and », determining the ©
the time £ = 9, and v = 0 when £ = . . :

\ 15, A particle moves . 4 straight line under the action of an attrac-
Uon varying inversely as the (§)th power of the distance. Show that, the
velocity nequired by Failing from an infinite distance to & distance @ fr.om
the centre is equal to the velocity which would he acquired in moving

from rest, at a distance @ to & distance 5;-




F(t) being the elsctromotive foree. Find the current 4, g

1926 DIFFERENTIAL EQUATIONS. [Cn. 3,

16. A partisle moves in a straight line from rest at a distance ¢ .
towards a centre of attraction, the attraction varying inversely as the
cube of the distance. Find the whole time of motion.

17. The differential equatior for a circuit containing resistance, seli-
induction, and capacity, in terms of the current and the time, is
@4 | Rdi i N\
=e E R Tt 2 A
it La LC Lf ® AN

18. The differential equation for the above circuii iu ..LEmi‘S of the
chiarze of electricity in the condenser is ’\§ /

wwrw.dbr aullla%ﬂyﬁl% LC‘ sz(f}

¥ind the charge . x.\\f
LB R o M
19, Solve T4 20, L — 9 when {@0}41;

idt o )
2. Sol\e L o + j. o= =10, the ﬂiﬁeréntial equation which means that

the sci[-mductlon and capaclty in a. clrcmt neutralize each other, Deter-

wine the constants in such a Way that I is the maximum current, and
i=0when t=1,

('The given equa.tlon,,.orhlﬁel rentistion, reduces to ﬁ E =0.).

2. When the ga}a.nometer is damped, the equa,t.mn of motion may
be written

™ X 2 AL ku’@
o \u di
a being/theleflection of the ncedle from the position from which angles

are lred when in its position of equilibriom, the factor i de pending
om ﬂlf’ damping, and «2 on the restoring couple, Find the position of the

+ w2(8 — 2} =0,

o~ ne.ﬂie at any instant,

N

(Emtage, Electricity and Maynetism, pD. 179, 180)

*22. ¥Find the equation of the elastic curve for » cantilever beam of

uniform eross-section and length 7, with a load P at the free end, i
differential equation being
By

Er—
dxs - I,

where Tis the mement of inextis of the cross-section with respect to the -

-_—

— ——————————"

* Merriman, Mechandcs of Materials, pp. 72, 73
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neutral axis, aud E is the coefficient of clasticity of the material of the
beam. (The origin being taken as the free end of the beam, the z-axis
peing along its liorizental projection, and the y-axis being the verlieal,

g‘%: 0 when #=:{, and y =0 when » =0 These conditions are suffl-
gient to determine the constants.)

#83. Find the elustic curve when the load js uniformly distributeds
over the beamn described in Ex. 22, say o per linear unit, the dlfferenﬁa‘l
equation being y , 1\

&y Wi - Y
Bl =""3 A0

24, Find the elastic curve for the beam considered In E{\‘f:% when &

hotizontal tensile force § is applied at therfree &mﬂl@m%%@l fua-

tion being \
Er d'l QJ _ 1 wxﬂ ) x:‘\\"
daz ™ '\ 7

* Merriman, Mechanies of Materiels, pps .LZ 13
t Merriman aud Woodward, .Hag.-‘wr M:.Qmemar,ws, Prob. 108, p. 153,

o~
¢ \ J
N \
" *
f“ N
AN/
@
A&
AV
“.‘0 \
A\
O
SNV
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CHAPTLER XI. ;
| S
ORDINARY DIFFERENTIAL EQUATIONS WITH !
v MORE THAN TWO VARIABLES. (n:". E
v 97. So fap equations containing two variables\iave been eon-
sidered.” "It 15 ﬁolwrglegé%gﬁi% to treat o fedMpims confainingy
more than two variables. Such cquatigns\are either ording
or partial, the former having only ou ‘ndependent variablé,.
and the Jatter move than one. In Bhig/chapter ordinary difier
ential equations will be discussed. I '

98. Simultaneous differential\#quations which are lineat. First
will be considered the caseith which there is & =et of relations
consisting of as man§\simultaneous equations as there ar
dependent variablegiymoreover, all the equations are to be
linear” N

By followinghe method somewhat analogous to that employed
in solving,sets of simultaneous algebraic equations that involve
severa,l. A{lﬂmownS, the dependent variables corres ponding tojdlﬂ
gqlzinzqgfx_l__s‘,_:nhere is obtained, by a process of elimination, at
P’fi‘éﬁon that involves only one dependent variable with th

dndependent variable; and from this newly formed eqlléttiPll-i‘%
(" Ttegral relation between these two variables may be derjred
- Then a relation between a second dependent variable and the
independent variable can be deduced, either (1) by the methat

- of elimination and integration employed in the case of the fies
variable; or (2) by substituting the value already found fOE
the first variable, in one of the equations involving only g9
ﬁl‘_ﬂt and second: dependent variables and the indepeudeﬁ%
variable. The complete solution consists of as many indeH
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dent relations between the variables as there are dependent

variables.
The following example will make the process clear:

Ex. 1. Solve the simultaneous equations, "

(1 ‘Ir+(gr+2x+y—0

) _dl!.+ bz 43y =10

. Diﬁerenmamon of {2) gives

3 _(Im 3% _ o,
() T?‘W Isw dbrauhbrary org.in

s

These three couations suffice for the e]immaﬂ\en of » and i?, this
W

elimination is effected by multiplying the ﬁrs:t»‘équatien by h"_5-:"aie second

by 2, the third by 1, and adding ; the result i ds y
R A
? Y, EAR L
4 EN ’b‘ 0 e

Solving (4),.
' Y = Ac@st—[—Bsmt,.

and gubstitnting this v‘\lgm}\f g in (2),
\\'%A + B coq:+A 53331116

e { ) . .
By using 1l1pss}mbol D, whlch was employed in Chap. VL, the eiinfina-

tion can bc’;\rffeeted more easily. On snbstituting D for% the given

.

s

ol

equat.i%lé'}ge‘come S

N (D+De+(D+Dy=0

PN B+ (D By=0.

\J Bliminating # as if 2 werc an algebraic multiplier, .

3.

(s y=90

which i3 equation (4); the remainder of the work Is as above.

Ity had been eliminated instead of =, the mﬂlﬂtmg equatlon would

b have been
Coe . (D2+1)$—' ”””””

B Whence ) = Afcost + B sind; \




substitntion of this valug in

-y i
5 " _oBe—_2y=0
( ) dt i 1 Al
which is (1) minus (2), gives
t
y=—3‘8+‘4 s,mr+ "_"‘1 cosl.
2 A

F 4

N
Substitution is made in (5), because it is easier to Jurive the va.lu{o}}“ |
from it than from (1) or (2}. \/
The second form of solution comes from the first on ml{a‘w@tmg A
for — 54 + B , and B' for A—'_--‘}—B the coeflicients in Ule. iv.rst value of
o

® In gwmmldﬁ&gmr,syaﬁ.gammmy in the v alusl of; anly one of the
dependent variables,
ANY; -
i Pp) .

de . 0 v'.‘ & &
i } A\

dy L o o
2 —by=0 W
% Y \

~Ex. 2 Solve

" Ex. 8. Solve L og . 'Ey A ;: 1

NS

O _ el Dy — o2
dr .f*\?" e |

. s\ J
Ex. 4. smveai@\k\gﬁ?u. Mrt0y=t ;

.‘\ﬁd"'#"?+ HL 083;_3:)-‘

L >
o N\

E J ",\’.:" L PV
\\;5“ Solve =7 — 4z —dy= n]
R\ " _ ¢
2 4 x4+ y=0 J!I

& =27

AN et

o/
\

99. Simmitaneous equations of the first order. Simul taneol
equations of the first order and of the first degree in thy
derivatives can sometimes be salved by the following methﬂifs«
which 1is generally shorter than that shown in the last articlé:
Equations involving only three variables will be considered;
the method, however, is general, and can be applied to equ¥
tions havi ing any number of variables. g
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The genpml fype of a set of q]muhaneous equatwns of the
- first Ordei between three variables is
Dyde 4 Quedy + Rdz =0 (1)
Pl b Qulty + Roudz =0 }

LI, + Qe N
where the coefticiouts are functions of =, , 2 ¢\
These equativns can be expressed in the form >
, ' de _dy e TN D)

- P ) =R ’\\
where P, ¢, R, are functions of z, y, 75 forbojaking z as the
independent variable and solving equz&bra {ﬂwgﬁ%fm

de_ QB — QB dy _R> DR |
dz Ple -~ Pyl dz 3 -Ple' P2Q1 e

gz d'y — dz N
QT2 — Ry Rﬁ—&ﬂ Pif), — Bpl

whence

which is the form (2) abov

In what follow: eduatmm. (2y will be taken as the type of

a set of simultaheos equations of the first order..
-f' . Tt one of the variables be absent from two members of (,..),1
-the method 0}‘ procedure is obvious. For example, suppose

© that 2 13”%'§e11t from P and Q; then the solution of

’ .s’\\ dx d?}
RN\ 7T
\ glves a relation between x and y, which 1s ene equation of the
“tomplete solution. This equation may enable us to eliminate !
~zor y from one of the other equations in (2), and then another |
_integral relation may be found ; this will be the gecond equa.-i
tion of the solution.
Since, by a well known prmmple of algebra, the equal frac-
da: dv dz
RJ

tiom are also equal to
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lde+ mdy +n dz Ude + wm'dy +» c_fv
IPrmG+aR’™ 1P+ mQ + n' i

cte.,

L

the system of equations

Cdx_dy_dz_ lde 4 mdy+ nde Erb-i-mrh;—'—ﬂdz ()

r @ R IPLm@ 4 nk PI a4 ?a’ld <

are all satizfied by the same relations between e that
satisfy (2). "\l

B - may he possible by a proper (‘hmce of mulupllf'ls 1, iy m,

© U, m’, w', ete., to obtain equations which are t,.mm} solved, and

hwmm@%m%ﬁM%@mmM%sd@)'mpmmmmzmm

+ may be found such that N
} zP+mQ+ﬂRA0 @)
and consequently ¢
Eda,—i—mrh;-tnéd——() (%)
v/.If lde + mdy 4+ ndz be an, exuut differential, say s, then
- \ : Vi = a

is one equation of theie"omplete solution.

If ¥, m!, n', canchelchosen so that I'P 4- m'Q + n'R = 0, and

- Vdz + m'dy +@'dBIs at the same time an exact differential, 9

then, since di\ig also equal to zero,

;‘ ,\ p v="h
AN

is tho-gécond equation of the complete solution. The two com

pou\\en‘t solutions must be 1ndepende}1t
'.= /Ex 1. Selve the simnltaneous equations i LA r

— = 22 2wy 25:3 _

The equation formed by the last two fra.ctmns reduces to

dy _dz

. ] y oz
which has for its solution .

: ¥ =az.

Using =, y, #, as multipliers like Z, m, n, above,

ax My _dr _ddr+ydite dz.
—y Z:r,y 2xz x(:c&+ Y2 4+ 22)
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The equalinn forned by the last two fractions has for jts sulution

2+ %+ 2% e ba

The eormplote solution consists of these two independent solutions.

. ; : .
\FE\ 2. Bobve m.-‘:l“—n oy - 1\;.:»;‘-;!‘f 7 5 (—Zﬂ':':?.-:;‘;. K
By usinlg the walii piic.l-'s 7, m, n, one gets Lhe equal fraction \\
lde + mdy + ndz N
o O
therefore x4 mdy + ndz =0; N
whenece 12 o my WY dbr auli?ra’fy.brg.in
The multipliers , ¥, #, tsed in a similar inann%} g’ive . ’
cede+ydy+zdg= b
_. whence ’ &+ yﬂ’-t ;12__ e
r These two integrals {orm the com.gi‘éié’integml of the set of equations.

v Ex 8 Solve :c.fi;n_dgzrl_z‘*:;
: ez vz A %
e Ex. 4. Sdme di’:%ax\‘—}% -
i £ ¢ &‘.'nxy

| Ex 5. Solye @I _ 07

- i) 2.8
L A ,{ o
_bdy . odr

V‘Ex. 8. bﬁL\‘ﬁQ oAt = .-
A& (b~ elyz  (e—a)ze {(a@—b)ay

. ﬁ\(ﬁg&tious of the first order. If the first member,
) - lde -+ mdy + nids

P ;

) of (5) Art. 49 be an exact differential, du, then, sinee

du_ﬁdm+a—9rd‘y+6z s

e

,5,}’ jm, i, are proportional to a7 'é_?;’ -
& :I‘E’ (4) Al't. 99 Illa.y be Wr].ttB]],

100:" The general expression for the integrals of simultaneous

du 8w 90U egpactively; and there- -

il

X:/ )



134 DIFFERENTIAL EQUATIOXN S, [Cr XI

e

SRS O

ax | ay

Hence, if =« be one of the integral equations of the sys-
tem (2} Art. 99, then » = ¢ also satisties (1).

Conversely, if ¥ =« be an integral of {1, it 1z also an inte-
gral of the system (2) Art. 99.  For, since the (lenominatqr.\uf\

dn B d O

— a4 — dy 4 — dz g >

dw + dy v+ dz Y

. B pin O
www.dbraulibrafzorg iy dz ’\
which is formed by means of X — @—-:f?i\’\md the multipliers
PV “ ¥ A '
w duw duo .

—, —, -=, is thus 0, the numerator alsduiiist equal zero.
dx oy 0Oz \J

But the Yuumerator is the total Guferential of u, and hence
uw=q is an integral of the syst.e.l’lj."(Z)‘

Therefore, in order that we=‘e may be an integral of (1), it
is necessary and sufficientithat u =@ be an integral ot the
system (2} Art. 99, and{conversely. .

Moreover, any funétibn whatever of the w and the v of At
29 is also a sohltih@\df (1); for example,

S = g0, by =0 or ¢(wv) =0,

'_" which is‘eﬁiu\ally general, since ¢ can be involved in the arbi-
~ trary function. This can be verified directly. tlence, if

%

O\ w=a, v=1b,
; ,\1§e"’1ndependent integrals of the system (2) Arl. 99,
é{u, v) =0

. 13 the general expression for the integrals of these equations.
The arbitrary functional relation may just as well be written
* in the form u = f(v). This deduction wili be used in ATt 115.

e

101. Geometrical meaning of simuitaneous differential equations
of the first order and the first degree invelving three variables:
.
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Fquations (1} or (2) Art. 99 will determine, for each poing
oy

(%, ¥, 2), definite valnes of i and -~; that is, these differential
el di

equations defermine a particular direction af each point in
space. Thercfore, if a point moves, so that at apy moment thed"
eo-ordinates of its posttton and the direction ensines of its ljne
of metion (these cosines being proportional to da, dy, clg‘é}aﬁ
hence to P, @, R, by (2) Art. 99) satisfy the differentialeyna-
tions, then this point must pass through each positian in a
particular direction. Suppose that a moving poi.utz;!" starts at
any point and moves in the direction determineﬁ?for this point
by the differential equations to avseecdbrgeliiratynrinfinitesi-
mal distance; thenee, under the same condit@ﬁs to athird point;
thence to a fowrth point, and so onthéti P will describe a
eurve in space, whose direction at apydene of its points and the
ce-ordinates of this point will gatisfy the given differential
equations. If P start from ,Anether point, not on the last
eurve, it will deseribe anoth@™enrve; throngh every point of
. space there will thus paéS'El definite curve, whoge eguation
satisfios the ziven Qif(‘erential equations. These eurves are
the intersections offhe two surfaces which are represented by
the twao equ_at-imgskhrming the solutions; for, these two equa-
tions together Aebermine the points and the ratios of da, dy, dz,
thereat whieh/satisfy the differential equations. Moreover,
the curvédare doubly infinite in number; for they are the
| interseétions of the surfaces represented by the indePe’?f‘ieER
iiltgg's?%s % =un, =0, and each of these equations contaifis ap;
'ﬂ\l'h{t.rary constant which can take an infinite number of valu."c@).,
f . Thus, the locus of the points that satisfy the diﬂ"erﬁnhfll
' equations of Fx, 1, Art. 99, is the curves, doubly infinite in
. Tumber, which ave tho intersections of the system of planes
. Whose equation is

. Y = Iz,
L With the system of spheres whose equation is

@4y + 7 = b
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and the 1ocus of the points that satisfy the equations 0[ Lz, 2,
Art. 99, is the curves which are the intersections of all the

planes represented by

x4 my 4+ nz=rc,

¢ having an infinite pumber of values, with all the spheres
L2 =1

I having an infinite number of values.

? 4 N 4

A
'S
N/

:“’s'

“102. Single differential equations that are, mt&g’lable Cop-

has an integral

The

o

72

_f_'(,,

qlua Jlom

d;txon m@%&'ﬁi&&ﬁ’bmy argin
“Pda+ Qay + Rz =0
K,

N\
~~ N/

when there is a Tunction « whose, ‘E,ot"ll differential du iz equal
to the first member of (1), or to that member multiplied by a
factor, - If (1) have an mteggal’ (‘?) then, since

‘l

\\
P, Q, R, must Pe, proportional to du u 8“ 0%,
O x By a2’
AW .
x:\"’ P-P: aj’ f/.
\E"\.“ dx -
;;.'\\ #Q = gu
.:..\‘:; J
\ ou
R i
# 0z

da

&_do:-i- —-d —|— o dz:,

that is,

These three conditions can be reduced to one involving bhe,
coeflicients P, @, R, and their derivatives.
the first of these three eguations with- respect to y and z the.
second with regpect to z and =, and the third with respecf to -

@ and %, there resulis,

On differentiating
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pley 00 P g0k, 39)
Ay dy  dudy oz ox
SO 0 8 4,8 AR
ity P YT pOp LLLON B
oy dy 9z ay oy L”
g, 0B Fu_ pdp 0P
S I P v dz T dz O\
. £\ ’
whence, on remranging, comes « \/
ar ag 9 E
e m @l plE - ¢
dy du dy N\

At dRN _ R n

gz dit dy
bR ) pla
dr  dz dz .

Ne?

SANT
)

@\giﬂb iwl:ll:")ral'y,lf_)rg\in

i
e

S

A

On multiplving the first of the [ist three equations by B, the
second by P, the third by @fand adding, there is obtained,

P(IQ_IR\, SRR AP\, n(iP_39Y_,
(03‘ dy i_“, dx ok & dy o ’

@

the relation thafx}ust exist hetween the coefficients of (1)"

when it has ga'idtegral (2).

Conversely, “when relation (3) is satisfied, equation (1) has
a3 integfAl;* and hemce (3) is the necessary and sufficiont
: “Uﬂfﬁﬁ\:uw that (1) be integrable. It is called the condition or'.
etit@ion of integrability of the single differential equation (1);

’..Qllﬁ,’is easily remembered; for P, @, R, «, y, % appear _ii_l _it__{]} a

\ ;Bégulf_t.r eyelical order.

- 103. Method of finding the solution of the single integrable

equation. Suppose that the condition for the integrability of
+ Rdz=0 .

Pdz + Qdy

— _

% For proof of this, see Note H.

@)

— -.,;::
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ig satlsﬁ{,d a method has now to be devised fcu finding its -
solution* Pde can only come from the terms of the integral -

. that cootain 2, Qdy from the terins that contain y, and Rds

‘,l

from the terms that contain z. llence the integral of (U)is
found in the following way : '

: i Congider any one of the variables, say 2, as constant, that is,

take dz = 0, and integrate the eqnation )
Pdis + Qdy = 0. D )]

Put the arbitrary constant of integration that, ﬁiuqt appear
in the integral of (2) cqual to an arbitrary funchﬁ’u of z. Thig
is allows¥ie- HeraMiibraty 08y constantaNthe integral of
(2) is a conslant only with respect to @ s}\d #. O differen-
tiating the integral just found, with respett to ., 7, and z, aed
comparing the result with (1), it witl be possible to determine
the constant appealmg in Lhe 1,nteg1"1,1 of (2) as a partieclar
function of z.; \

Equations which are homogeneous in w, y, % like those in
Art. 9in w, y, are always 111t9g1ab19 The initial step in snh- i

ing these equatlous 1s\i:he substitution of zu for #, and of zv i
for y.*

Nore. That 'm\equ'11,1on of the form
P \Pd-.v T Qdy + Rz 4 Tdi + --- =0,

involv‘in\’é;\ﬁﬁore than three variables, may have an integral,
conditien (3) Art. 102 must hold for the coefficients of all the
tCI:i‘_E_L‘? taken by threes. All the conditions thus formed ares _

}hm\*ever, not independent.t

i
4 Ex. L Solve (¥ 4 2)de + (2 + 2)dy + (5 4 )dz = 0.
Here, the condition of inlegrability is satisfied.
—_— —_— —— -
* Bee Joknson, Diferential Equations, Art. 250,

T Bee Johnsen, Differential Eguations, Atts. 252-254 ; Forsyth, D’éﬂ"""‘
c‘nmal Eouations, Arts. 163, 164, For . complete proof of these propost
tions, see Forsyth, Theory of Differential Equations, Part 1., pp. 4-12. -
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s e — _

/&/ﬁuppose that z iz a constang, then d» = 0, and the equation becomes
.
(¢ + 2y +(z +x)dy =0;
and this en integration yields

w+aG+ey=d=90. _ “

s .
o Differentiation with respect to @, ¥, 2, gives A e
2
AT g0, o\
(- &yde - (2 4+ addy 4 (2 + y)de - 2ade — @dz =0 O
;(:‘ - : . . . - 7 ’~.‘"
" Comparison with the given equation shows that a\ 3

4 P £7)
Yzds —dp =10 v’ m\\’
. W W dbmuhbrary org.in
whenee p(z) =2+
Therefors, (¥ _|_ z)(‘ + x) =2 c-ﬁ L
or, redueing, wy -+ yz + 22 = o2 is a solutiondeithe given equation.
This exawple can be solved more ("Lsﬂ_\,"’h\f rearranging the terms in
the fDHUWmU' Way ; AN N

wdy + yde +sz +~“c?gi—zd,'.., +ede=0,
wiere the integral is geen at a,g,Iallce 0 hé’
N\
0))! Yoyz 4+ zr=

It is well to try to o%{}m the integral by rearranging the terms, before
' Raving recourse to the regular imethod,

o N/

e sonk N+ dy-+ 2 de | 2dr—2d2 | 3 0agp 4 2 by dy+odz=0.
: ~C @ryra)t o+ K
Her, \bhl‘ra is no need to apply the condition of integrability, for the
" 59"‘315311\3&118 ate ohviously exact differentials ; the integral is tmmediately
Bﬁf{n 10 be
W

S

VAL PP+ tangl L ot + by b e = ke

S

h.’/Ex 3. SBolve (y+ 2)de ;{— dy+-dz=0."

‘/I‘ax 4. Bolve zyde = zady - ydz. v/
4?"’"];2?; 5. Solve (2:\‘9+2:|:y+2x¢-+l)da‘+dy+3‘z&~"’0
:’ Ex. 6. Solve (4% + y2)dv + (xz + )y + (9° —wydde =0




140- DIFFERENTIAL EQUATIONS. [Cu. X1*

104. Geometrical meaning of the single differential equation
‘which is integrable. Suppose that the equation

Pie 4+ Qdy + Rz =0 )

satisfics the eondition of integrability, and thal its selution i
7z, g, 2) = (. &
¢ NN

Equation (2) represents a single infinity ol surfaces)thete’
being oné arbitrary constant. This eonstant can e gk.;;pe?’mined"
so that (2) will represent the surface which passes ~1;T1r<3ﬁgi| any
given point of space. If a point is moving npo s surface in
any didsetiodbthylibrariecinet its position ael the direction
cosines of its path ab any moment, whig;]{\:;m proportional to
in, dy, dz, satisfy (13, since (2) is the 11(;&9;1&1 of (L). Alsofor
each point (, ¥, 2) there will be amjufinite number of valnes
of %’g and 33 which will satisfy {1), therefore, @ point that is
moving in such a way that ,itfs;’;.cb-ordinatcs antd the direetion.
cosines of its path always fsﬁtisf’y (1} can puss through any
point in an infinity of directions. But, when passing through
any point, it must remAit on the particular surface represented
by the integral (4 Qi\-"hich passes throngh the point: henee all
the possible euwyes; infinite in number, which it can describe
through thatpdint wust lic on that smtace. '

. It haa beeﬁ showr in Art. 101 that a point which is moving
' subjeqt\";} ihe restrietions imposed by the two equations @,
Art, 99can deseribe only one curve through any one poié
qn:fthe other hand, a point that is moving subject to the regtric-
:Q}iah of a single integrable equation can describe an infinity of
\“eurves through that point; all the latter eurves, however, lie :
upon the same surface. :
For example, a point passing through the point (1,2,5) in guch
© a direction as to satisfy the equations of Fx, 1, Art. 99, musk
move along the intersection of the plane having the equation

. _ Sy==2¢
and the sphere whose equation ig
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M4+ =14
A poink moving 50 ag to satisty the equatidn of Ex. 1, Art,
103, ean pass through (1, 2, 3) in an infinity of direetions,
bat all these posszible paths lie upon the sutface having the
equation

e oy 4 4z + 2p== 11,

N ¢O)

fy
. 105. The locus of Pda+ Qdy + Rdz =0 is orthogonal £0'the -

e oy oz . -

loeus of 5 — 7“2 The aquatic N

o AR i The equation P _

Pz + Qdy Tk VY 1
e+ Qdy -+ ﬁﬁ}auhbrar}y.org,jn 1)

Teeans, geowetrically, that a straight line whose divection eo-
siues are proportional to dm, diy, oz, is pii‘p,bndicula,r to a line
whose direction cosines are proportionglito P, @, ¥ There-
fore, a point that is moving subjeef fothe condition expressed

by (1) mnst go in a direction apRight angles to o line whose

direction cosines are proportiondo 2, @, B.
Ou the other liand, the equitions

e dy_de 2)
.i“x\j’_Q I ; (m)

mean, geometrimlly\,that g straight line whose dircotion eo. ™
Sines are propomtdenal to di, dy, dz, is parallel to a line whose e
direction codhe¥ are propurtional to P, €, & Therefore, a
point th‘}sf\”i.}"lnoving subject to the conditions expressed .by

@ NS0 in a divection parailel to a line whose direstion .,
cosings, hre propovional tg P, @, R Cherefore, the cuEges
tavert out by points that ate moving subject to the condition

‘Ql)'are orthogonal to the curves traced out by points that
e moving subject to the conditions (2). The former carves

are any of the curves upon the surfaces represented by O

therefore the curves xepregented by (2) are normal 1?0 thg__ _

sirfaces represented by (1). If (1) be not integrable, there
—_—- i _'—"-'_-"-_-‘-_-_-_'_‘_d

——— JR——

¥, S%uiah, Sotid Geometry, ATt 24. o
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is no fzumly of snrf&ces v.hl(,h is orthogona! to all the hnéﬁ‘;
that form the locus of equations (2).
The principle deduced in this article will be employed in
~ Art. 118 of the next chapter.

G, The single differential equation which is non-integrable.

When the condition of integrability is not satisfied for N

AN

Pz + Qdy + Bdz =0, M)

there is no single velation between w, y, 2, 13, fEII example,.
FECA A5 thl};; \nll Sd.tlbf (1). N\ N

- T4 Low ex er, here D6 A aumed some nneual Yelation,
\ \
¢, 1, )=, 770> @
a .y - \ ’ -
which on differentiation gives the d}ﬁereutml relation
g‘f’ do 4 0% d?,» + d¢’ Az == 0, 3)
J \

two integral relations can ’oe found which together satisfy ()
and (3), this being thetake discussed in Art. 90. Of course, (9)
iy one of these relations.
Buppose that, \\ Fla,y, =0 #
i3 a relatiows Whleh with (2} forms the complete soluticn of
equations{ (1:) and (3), In Art. 101 it was shown that the
locus of dhe complete solution of (1) and (3) consists of the
curgeshef interseetion of (2) and (4); hence, geometrically, this
Sol?lmnn of (1) amounts to finding the curves satistying (1). thet
~ie on the sarfaces represented hy‘m
Ex. The equation )
(1} wd«-{—_;:ly—kc\,l —--‘—riz_l’}
a?. b?
is one for whick the condition of jntegrability is not satisfied. SHPPO“?
that the relation -
9y ¥ 2
| @ Z+he5=1
be assumed.
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* in viripe of (2), (1) may be written in the form
%
(3) xdn+ydy +2dz=0;
whence (4) a+ i+ B=ch
) Thus (2) with (4) gives a solution of {1). Had u relation other than
{2) been assumed, a co-relation other than (4) would have been obtained.
The geometric interprelation js, that the lines upon the ellipsoid repres
sented by {2) which satlsfy (1), have been determined ; and have beeny
_ found to be the intersections of the family of spheres whose eqtla-tj&l Ji
;‘ f4) with that cllipsoid. G
! < ~¢:

L
EXAMPLES ON %&Hﬂma&]ibm{f‘;org.m

L dﬁ;—k?"z—”—ﬁar—l—z =3e o & 2‘—;‘_’;’1—525\\—.:41!:2’.&_

feld dt fio .‘f{:g
%f;ﬂ f—i—i—’-wmﬂ:u% %%&‘4%’;—32:0-
| * 4%'1‘95%4‘2174'31?:8‘_ :"14’ %§+4J?-+3?f:i
W o =3 N\ %Hﬂﬁyﬂ‘-

386 v = —2mar, OO

oty =(w ety —l—}sc\— t)dt.
6. a%de? 4 y_’dysa,__z’adz‘z 1 2aydedy=0.
4 '\/?1 (:céy —:K;:J;zjdx (o — iz — ¥ dy + (0 + T)de = 0. thve-e] b
L (u&r?¢+ )il 4 (72 - am + )y + (0T g+ ) dE = o558
"B.; : (‘y/\-i- ayz)dic + (2 + wye)dy 4 {2y + zyz)dz & 00 -
\ ﬁij Sely + 2)dx + 2(n — )iy B¥w — Wz + ¥ + #)du =0, v
ML 24 12 + 2 xz)dr - 4 aydy + Pdz = du.
U et (o =0 - 2 - (o - OB AN
g’ie TL iy =4

1, P _ ot
dtﬂ+4$+y_te . ' 9 fridd
@y ' '@ =0,
a2y Y e = O
-— = 2 _— et =
. {m—i—y 2 2 =cos? i ar )
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\
4

15. (é—; = ny — m 4 16. if; = {;f = 'EZ. wlhere
* R T X=un+ by +eztd
e Y=ulo4 by ez pd
g._‘:: nz = fy. 7o e By 4 oMz

o K
17. Show that the integrals of the system \ 7\“.\ '
d—i’: o S by + o d_y: ghar - D'y + 1y ! o/
it i N
are (o + wya’) (& + mgy) + o 4wt = ‘J.-Lrji’*-—"*l'*‘g;:'
W b pamtrery- orglin ¢ + s’ e AT
where my, meg, e the voots of . N

a'm?+ (o — bm — L’< 9.\;

and obtain a similar solution for the systéan/

B dfj_.{’;"_ o _' .
E_m‘,—l- by,’:‘;&a—(u, |- By |
';:’," {(Jolmson, Diff. Ey., B, 16, D 269-)_

18. Find the equation of 't.h‘e p%.th deseribed by a particle subjest 011{:,'
to the action of gravity, afterbeing projected with an initial velocity #M
a direction inelined at #fi\angle ¢ to tho horizen.

19. Dotermine tlhs&mth of a projeetile in a resisting medinm such 2
air when the refaxdation is ¢ times the velocity, given thal the initial
velouity is v, i/ divoction jnclined at an avgle & to the horigom.

20. Ej.n\ity}{e path described by a particle acted apon by a central forck
the foven, being directly proportionsl Lo the distance of the particle.

R 1 3\ The two fandamental equations of ke simple analytical theoty
ofithe transformer are )
o N -
J . i L
e By + L= M2 — gy,
T a
. 13 i
Rofs + L2 a7t _ g
! w Caw

where 41, i5, denote the currents, Ry, R., the resistances, Li. L, e
cocfiicients of self-indnction of the primary and sccomdary currents e

speotively, ey the impressed primary electromotive force, and M b
mutnal induetion. |
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Show that, e, &1, &, 2ued § being vm‘mble, the differential e ua.tlons for
7 -
“the primary and gecowlary enrrents respectively are,

(LaLy — M2 )”l‘l IRT NN )é— b BBty = B + Lg 1

(Eas ~ DS (LRt LaBr) it Bt = - M“;:. .
o AN
& N3

(Bedell, The Principles of the Transformer, Chap..' .) “

22, The general aquaticns for electromotive forces in the tw\o‘o,grcmts
E of a fransformer with capacities ¢ and ¢z being S

W
\;..\\
»'Zw N4

j-z it
€= f({) = + Bt thr #’atk&l ary.org.in

-~ i Y N
where ¢, {1, ., £, are variable, show thaﬁ @he differential equaiions for the
mrimary and socondaty eurrents a,re‘

21y

(LeZy — ?m‘ ‘1 CP1L2+£;.LI») (?U“Lg“’ P\m

pis) v Al fz’ 1 2o NGRS Pl
(*21\\ +Plcgi _r(H Ryt (6] + Laf ' (2):
d 1]
(Llr"z — M rﬂ{f 31—»{1"11;2 + PzLj)%? + ('L: += Ls -+ lei‘z)_iz%’f
’\”'(R] _l_}fz)(hz_}_ 1 :_ﬂ_,ﬁ-ma)
ty dt C_\Cg
K {\ (Bedell, The Principles of the Transformer, Chap. X1}
~?~”’ L .
®)
\)..:
/
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e

CHAPTER XIL O\
PARTIAL DIFFERENTIAL EQUATIONS, N

107. Definitions. Tartial differential eq_uatién% are those
whickeandlimulibrarjorg. partial derivativeguand nust, these.
fore, be concerned with at least two indopauiler variables.* .

The derivation of partial different@(equations will he dis
eussed in Arts. 108, 109; equationsief the first ovder will be
cousidered in Arts. 110-123; apdAhose of the second ant
higher orders in the 1'emaini1)é:”part of the chapter. Thes
eguations, exeepting the qm;s"treated in Arts. 117, 134136,
will involve on’ three variables. In what follows, z andy
will usually be .akenss the independent variables, and 2.3
dependent; the parfiph differential coefficients o a_z, will ‘e
denoted by p and 'y respectivel o< 3y

Y I 1;1 I bpﬂc 1ve ¥y .

108. Deri¥ation of a partial differential equation by the elimk
nation 6FyGonstants.  Partial differential equations can b
derivéd) in two ways: (@) by the elimination ot arbitrary o
g’r@:%s from a relation between x, ¥, z, and (b) by the elimination
,\~0i’3a,rbit1'a1'y functions of these variables. To illustrate (a) take

¢ (=, 3"’ % a4 b)=0 @

a relation between 2, ¥, #, the latter variable being depeﬂdﬁnt
upon @ and ¥ In order to eliminate the two constants & b

* Equatinns with partial derivatives were at first studied by D Alember

(see p. 173), and Enler (see p. 64), in connection with problems
physics. o
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two more equations are required. These equations can be
. obtained from (1) Ly differentiation with respect to & and y; -
they will be .

' d a
b 3

A B
. =0, L4 T g0
2 e LT dy + 3 !

By means of 1lese three equations, ¢ and b can be e]imi_nateg,\
and there will appear a relation of the form NS ¢
Fyuzp @) =0, ’ oW @
a parfial differeniial equation of the first order. R4
In (1) the number of constantsvﬁ],i\m@},%qﬁig{.aﬁygl%l}hﬂ to
the number of independent variables, and an)equation of the
first order arises, Ef the number of con tﬁu}s to be eliminated
s greater than the number of indepeqd’q%f variables, equations
of the second and higher orders will}in general, be derived
The following examples will illugtrate this. In fthese exam-
Ples, 218 to be taken as the dépendent vayable. \/e

b

-

EX. 1. -Form a partial differential equation by thd elimination of the
tolistants b and & from
: (e KRR+ (g~ B+ =

Differcntiating with rcépet to = and ¥,

7 e—htap=0, "
,\ y—k+ezg=0
Sj}.bstituting ‘Fﬁe’ values of  — b, y — & from the lagt two equations in the
given erwﬂm—l,
Y AP =
; E" 2. Form the partial differential equation corresponding to
\:..\’ F=ar + b+ ab .
’ Ex, 3. Eliminate ¢ and b from 2 = a(x + )+ %
'X. 4 Fliminate ¢ and b from z = ez + a2 + b
Ex. 5. Eliminate ¢ and b from 2 = (x+ @)y + ¥
Pix. g, eguation by eliminating &, &, ¢ from

Formt & partial differential
L @, P, P




8

o o,

‘tion of an arbitrary function. To illustrate (4} of Art, 108, sip

N \ dy 8z 9z Iy

© tial differential equation (2)4has been obtained, which d"es_nﬁ
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109. Derivation of a partial differential equation by the elimj

pose that « and v are functions of «, ¥, 2, and that there i3 g
relation between w and » of the form
$ (i ) =0, (3
where ¢ is arbitrary. The relation may also Le e-xpl’esgeﬁ*iljl\'
the form » =y (v}, where fis arbitrary. It is now to be’{jkow__n, )
that, on the elimination of the arbitrary function g~diom (1) |
a partial differential equation will be formed; aIi(}, TNOTEOVER,
that this equation will be linewr, that is, it wil‘l‘;be of the firsf -
degred i BRgulbrary-org-in
Differentiation of (1) with respect to g@tﬁ} ot the indepe.ndeu‘t.:-j
variables » and y gives ~ )
ap [ du du d @y @y
Pt S el i} T — | = ”
o (6‘::: P c?z) R 2 63) ’
A /s AN vf"'c‘h;b v v
gbfow | o OuNWOS (ow | I\ __
du \dy + Gz)’_} o (ﬂy e 63)

é

Elimination of g—¢, 8¢}from thege two equations resulis in
D

'y

N\
du &E\{fi_r A dw fn AW
(6:0 H)Gz) g T ¢ $> = (E +d 55) ({)a: tr az) :
¥ . .

and thi?.{és:n be rearranged in the form .

O Pp+ Qq=R, o @
o P

du do [

| T 9x oy oy ow
Thus, from (1), which involves an arbitrary function &; 8P

contain ¢ and is linear in p and ¢, T
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. wWhen the given relation belween @, y, # contains two avbi-
* tary finctions, the partial differential equation devived t.h.ere-
from will, except in particular vases, involve partial derivatives
*of an order higher than the second.®

- Bix. 1, Elininate the arbjlrary function from z = evg(z — ).

Differentiating with respect to x, =gz —y). . < ‘\
Bifferentiating with respect ta i, ¢ = newgs — y) —eel (x "3") J
t. al;d, thérefure, g = nz — & 4
that s, ptg=nzn e

L”
Ex. 2. Form a partial differential equation by elin:'ﬁz;hﬁng the arbi-
fnry funetion from z = F(x? 4 32). www.dbraulibrary org.in
P Ex. 8 Eliminate the function ¢ from x + !“17{\{' Rz = (a? o+ 20,
i
Ex, 5. Eliminate the arbitrary funqt{uﬁs :f' and ¢ from
f=flu+ ay)}$(x - ay)-

o\ 1
Fx. 4. Eliminate the function f from N ;y?\+ Ef(—+1°g§‘)'

Panrray, DIFFERENTIAL IQUATIONS oF THE FIRST ORDER,

110. The integﬂﬂ&:“‘ﬁ the non-linear equation: the complete °
- and particniar jntégrals. In Art. 108 it was shown how the
bartial differentia} equation
. :".\’ F(x,g;,z,p,g)#O- (1)
nay be dépived from '
. :"\.‘. N
i: ,\\ ' $& Y 2 4 b) = q‘ gl i
' Slljppose, now, that {2) has been derived f%D{{}q_(l): .bY: :
M methods hereafter shown; then the solution’(2), Whlf"h has
) B many arbitrary constants as there are il_ld.CPeDd.‘f‘_’.lt. vafng_l.gl_gs_,

i called the complete integral of (1). e barti rud
A parfienlar integral of (1) is obfained by giving particular
Yalues to o and b in (2). |
——

*Beo Bdwards, Diffevential Oa?c&f:us: Arts, 5P9h51-45 !j;;g}?mson,:
Dierentiar Caleulus, Arts, 315-519 ;- Johnson, Dgﬁ'gwgent‘w”-. e
Arts. 290301, :

o T
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111 The smgular mtegral The locns of .all the points
whose co-ordinates with the corresponding values of p andg
satisfy (1) Art. 110, is the doubly infinite sysiem of surfaces
represeuted by (2). The system is doubly infinite, becanse
there arc two constants, ¢ and &, each of which can take ai
infinite number of values. Since the envelope of all the > sty
faces represented by ¢ (@, ¥, 2, , ) =0 is touched ab ea@h of”
its points by some one of these surfaces, the co-ovdindtes of
any point on the envelope with the p and the g ht‘loﬁgmg to
the envelope at that point must satisfy (1); &ifd, therefors,
the equatiodbebtlibrenyelopents an integralol\d). The equa
tion of the cnvelope of the suzhees 11\]‘)1,05911‘@(1 by (@) is
obtained in the following way: ¢

. Eliminate o and & hetween the 1hree}quatmn 5,

(2 U 2 @y )

: d‘ﬁ =0,
\da
L dg, 0;
N\

and the relation ¢l usfound between w, ¥, # is the equation of
the envelope. H}lb relation is ealled the singular integral; it
differs fromya particnlar integral in that it is not contained in
the comlglte integral; that is, it is ot obtained from the com-

- plete int: gral by giving particnlar values to the constants

(Cohs(pai-e Arts, 52, 33)

112, The general integral, Suppose that in (2) Art. 110,0m
'Of the constants i3 a function of the other, say & =/ (u), t then
this equation becomes

b (ﬂ:s iz a f((lr)) = 0, (1)

whichh represents one of the families of surfaces included in
the system represented by (2). The equation of the envelop®

——

*For proot see C. Bmith, Solid Geometry, Arts. 211-215; w. B‘
Aldis, Salid Geometry, Chap, X,
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f

r

of the family of surfaces represented by (1) will also satisfy
1y Avb. 110, for rensons similar to those given in the case of
the singulur integral,

Moreover, this equation will be different from that of the
epvelope of all the sarfaces, and it is not a particular integral,

It is called the general integral ; and it is found by eliminat@ng
@ between : &
(1,2 o, f (@) =0, « N
wa s _
da Y

These two equations together represent a eiwve, namely, the
curve of intersection of two consetiitidRdlrary they sustem
$mme 0 f {a}) = 0. The envelope of th(a\fanlily‘ of surfaces,
being the locus of the ultimate inté¥dstions of the surfaces
belonging to the family, that is, of thelintersections of consecu- .
five surfaces, contains this cm:vé:’to which the name charae
feristic of the envelope has b8en given. Hence the general
integral may be defined as thjé' locus of the characteristics.

Other relations may affipear in the process of deriving the
singular and the genera} integrals from the complete integral,
but it is beyond thia§cope of this work to discuss such relations.
When one has porformed the operations necessury to find the
singular and, £B5 freneral integrals, he should test his result by
trying whether it satisties the differential equation. {Compare
Arts. 33-38!

In Qté“éa.se of every equation, the general integral and the
Sillgtglar integral, as well as the complete integral, must be
Meated or the equation is not considersd to be fally solved.

\The complete integral is to be found first, and from it the other
tWo are to be derived* It is evident that the locus of the
singular integral will be the envelope of the loci of all the
other integrals, of the general as well as of the complete.

* The distinetion between the three kinds of integrals of partfal dlf .
ferential oquations was made vy Lagrange in Memairs of he Bertin
Academy, 1772, 1774
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Ex. In Ex. i, Art. 108, the differential equation
z'z(pe |- !]’2 + ]‘): i (1}
{e— R 4+ (y —8)2 + 25 =7 {2
The latter cquation, which containg two arbitrary constants, is the ¢
complete integral of the former ; it represents the doubly infinite sysigm )
of spheres of radius ¢, whose centres are in the sy planc. AN
- A particular integral of (1) is obtained by giving & and & parlentd
valoes in {2); thus, A\ it
(2 -2 +(y—8)tat=22 ™
is a particular integral. ¢’ \

_The singnlar integral of {17 is the canation that repr'('!.’sg}nts 1he envelope
of thesw spledbran libramyusdghineliminating & g from (2 by means
of the relatious derived by differentiating (2) wxiu\Néspect to » and &

The dilferentiation gives (&

was derived from

2 — b= QNN

N

W - & = U’
W
on substitwting these values in (2):,' % and k are eliminated, and there
results the equation R N
\:z::}:c, L ;
This satisfies cquation gh), and, thevefore, is the singuiar iutegral. I
represents the iwo Iﬂfm'é‘s} at are touched by all the splicres represented
by (2). \\
\Bappose, NOWN ghat. one of the constanis is made a function of the
otlier, say, fhaty ™ '
AW kF=h

_ Thqa{t}} venires, sinee their co-ordinates have that velation, are 1
ericN@.io the straight line ¥ =z in the uy plane; and of the systel of
sphieres representing (23 there will be chosen a particntar family, namely;

(#— R +(y —R)E+2=c2 o

The envelope of this family is the tnbular surface, in this case & eylic-
der, whieh I& generated by a sphere of radins ¢, when its centre 100VE
along the Hine gy =%, The equat-iori_-of'this envelope is a general integr al; .
it is found by eliminating & from (8.) by meansg of the relation obtained "
by differentiating (3) with respect 1o h.

The difforontiation gives o — A + y — h = b,
whence ' Bo=3{x+ ¥,
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Bubstitnting this value of & in (3),
@y —2ay 4222 =88

srhich is a general integral.
I the relation between Lhe constants were assumed to be -

B=4 fl}i.-,

the corresponding zeneral integral would be ihe equation of the tubylaf

anrface geperated by a sphere of radius ¢, whose centre moves alopg, the

parabola ¥* = 4 o2 in the zy plane. O ’

£ 113. The integral of the linear equation* In Agt{109 it was
! ghown that from an arbitrary functional 1'elation'\'\ 7

qﬁ(?{, ’?a’)ﬁﬂ"ﬁ!&,db]_‘auli[?rar;(_grg‘jn (1)
there is derived, by the elimination of thptfunctiou ¢, a linear
partial differential equation g

Pp + Qg £ F @)

Suppose that (1) has been derived from (2); then ¢(x, v)=0
is called the general solutionWf (2); Sivee ¢ is an arbifrary
fanetion, the solution (1) Is more g"éarleraJ than another solution
of (2) that 1aerely conpaihs arbitrary constants, For instance,
Ex. 2, Ar. 304, shQ&\-’Sx\haJt the general solution of

N gp—ag =0
is \ = F@* + 1),
" wheve F,\Ieaiotes an arbitrary funetion. The arbitrary fune.
tion Fymay take various forms, as, : :

.g'\ v =ala® + 47 + b+ ),
A ) z=asn @4+ 4+ 4
- 'etc.-;

which are all solutions of the differential equation, and are

meluded in the general solution above.
.. _\,_'n_.—n—-—"‘-'_‘_'_'_'\_'_-_-_._-__\

*The student will find it of great advantage to read C. Smith, Solid
Femnetry, Arts, 216-226 ; W, 8. Aldis, Selid Geomeirt, Arts, 142~15}, in

connection with tlds and following articles.
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" 114. Equation equivalent to the linear equation. The type of
a partial differential equation which is linear in p and g is

Pp+Qe=1R, M
P, @, K heing functions of =, v, 2

Suppose that U= € ) \s\.
is any relation that satisfies (1); differentiation with fespect
to  and y gives (n.;.

8.'1, 8?; —0
3 “"\i.

www.d bl'aulibral ér;ﬁorgaw
—+—g= 0; RN
dy Oz O

N
henee & S
when p__@"‘i‘::__@'
gf:i?;":‘é dz
Substitution of these vaﬁiés of pand ¢ in (1) changes it to
%l& Y Q du + EJ:;, —0 (2)
‘\‘.8 2

"Therefore, i = & be an 1nt.egra1 of (1}, v =« also qahsﬁe%
(). Conver@ely, if w=a be an integral of (2), it is also an

111tegral0:£«(1) This can be seen by dividing by g

tuti ~p and q for the valnes zhove. Therefore equotion &
coonbe taken as equivalent to equation (1).

and substt

\:\ 115. Lagrange’s solution of the linear equation. In Art. 10
’ it was shown that '

iy, v) =
is a general integral of (2) Art. 114 when v =a, v="0 ar
independent integrals of the system of equations

de _dy dz

PTQ R
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Hence the fullowing rule may be given:
;I:'O obtain an integral of the linear equation of the form
I)p -+ Qq =R ¥

find two tndependent integrals of

de_dy_ds <&
== AY
let them be v =a and 2= b, ‘ N
then ol )= 0, M’\§"

where ¢ is an arbitrary function, is ﬁ%riéﬂ’f‘ fali of the partial
differential equation. ' \u\l rary.org.am

Waostead of ¢(it, v) = 0, there can wi K equal generality be
written 1 = f{2), where f denotes ap arhitrary functiond

This j5 known as Lagrange’s.solution of the linear equa-
fion;* the auxiliary equatio;fs: *(3) are called Lagrange’s
“equations; and the curves afintersection of the surfaces rep-
resented by the integrals of) (3) are called Lagrangean lines.

% 116, Verification io"f,\ Lagrange’s scolution. The ifruth of
- Lagrangy's solutisn, may also be shown in the following way.
Form the diffefential equations ecorresponding to uw=a and
* = b, by elizhinating the arbitrary constants @ and &; this gives

,~\’:.\" %qdacﬂ—g?jdy-{—gg’dz:o,
AV i 7
N\ e a ar
T+ gy Ede=0
N 6:5d3+83/r‘y+62 ’

) Joseph Louis Lagrange (1736-1813) was one of the greatest mathe-
maticians that the world has ever seen. He wrote much on differential
equations, and the theory of the linear partial equation was first given by
him. e discussed the casc of three variables and gave the solutl.on in a
memoir in the Berlin Academy of Sciences in 1772; he ireated singular .
solutions in a memeir of 1774 ; and in memoirs of 1778 and 1785 he gavé

a geireralised method applicable to equations having any pumber of_ va.ri_a!—‘__‘

bles.  See footnote, page 40,
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di Ly iz
whence Juow dudv  dudn  owdr di dee o dn

oy dz 9z oy 0z 0w dwdz ow dr,f i day Ja

But, in Art. 109, it was found that the equalion derived from
¢ (u, v) = 0 by climinatiug ¢ is A
e\,
Bu Gy Gudv » dudy Bt-’&u\. dide _ du &i}\
dy 6z Oz dy I dz d=  Ox dz) v dy jly 3:»

Comparison shows that these equahonq th\'P lQ(EOllns

www. dbraulibr Aryorg. lﬂi‘y ds v’
PTQ RN
and Pp+ Q= Rﬂ:e%épect-ively.
@ ]
Ez. 1. Holve xap + yzg = xp. A WV
Dividing by xyz, pLES,
ym ¥z
forming the anxiliary equataona, 3
\"g}\'b: =xndy = zdz
Integrating the eq%{?ﬁrformed Ty the first two terms,
) ¥_

N ~,,o —

®
Also y LLK—}-)’ dy =2zdz; whence 22 —ay —«. _
'l‘]ﬂ,e"fmp, the solntion js 22 — ey = ¢ (E), or f(32 — E¥, g) =0
% E
~E§ 2. Solve p+ q-—

alm

\v' Ex. 8. Bolve (mz — ny) p + (n& — 2)g = Iy — mx.

¢

Ex. 4, Solve «2p + y2q =2

Ex. 5. Solve ! p-l—:v;zq 2.

117. The lmear Squation involving more than two ult'lt‘%Fenﬂ"’”t
varigbles. If there be'n functions Uiy gy »++y Uy OF 0 1 VAT

bleg'z, @, ay, .-, &, 2 being dependent and the other variables
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independent, then the arbitrary function & can be eliminated
from

b (g Ugy vey %) =0 {1)
by an extension of the methiod used in Art. 109. The resnly ¢
will be a linear partial differential equation of the form N o

(\A

oz az de o\
P2 PR (2
|a.r_zﬂi 28-:39+ + "o R A 2}

7N
« 3

Moreover, on lonning the differential equationggorrespond-
IE 10 Uy = £, ty = £y -ev, #, =,y DY eliminatinﬁ?.he constants

€y Cgy ++-y €, and proceeding as in ﬁwﬂﬁ;é;hﬁmﬂ:iﬂh%qb{c&ined

Aoy _diy_ | _d, 4 (3
Pn B\

~ence the following rule may he given:

Tn order to deduce the gel,lgr:}if integral of the partial differ-
ential equation (2), write dSwn the auxiliary equations (3), and
find » independens in_tegmls of this system of equations; let
these integrals be, , ()

\ U 0y, Up = Gy oy U = Gy
then ' ~\ by gy ey 2} = 0,
where @\ﬁ}ﬁhtes an arbitrary fanetion is the integral ot the
given;‘e{luation. :

Suppose that » = ¢ is an integral of (2); then

S) B

”\‘3 i/ 6
V/ sinee £=_.f?i, GE=1,2 )
2 Qu -

oz

equation (2) can take the equivalent form

E du p e, pPu_g
Proe TP, e e
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2 - ;
< Ex. 1. Solve (t—}—y+3)& + {i+a+z) ot +{tt .-:--|--y)-(ft- =ty
g 4 gz

The auxiliary equations are

dt . dx iy _dlz
Ctyrz yhaztt z+tim b
N !-.0 N ’
. e T e KQ
whence, Bydetdytde dt—de_ R
B(e4 o+ w5 n—t :‘}
from this, log (¢ + 2+ ¥+ _—.;)3 = log __"L_i : vs.’"
_ 3
hence, - @O+t y+i=n QY
simitarly,ww dbraulgbrairgt.drg. iny + 2)5 = cz, v
and (et +u+y+ 25 =g
Hence the solution is \®
dile — D, (y— thw Pl yul =10,
«3
s 3
where o=t +ogFy + EYER

" EBx. 2. Solve x 9% 4, §.1.“._;_’ ‘:3”’ = ayz.

x ARl NP
g"\\

118. Geometrisﬂf\hfeaning of the linear partial differential
equation. Tn Agt. 103 it was shown that the curves whose
equations avé 'i,’ri‘ﬁegrals of

i"\;.:' . ? Q I

a:re@r right angles to the system of surfaces whose equation
-satisfies o _

\J Pdx + Qdy + Rdz = 0. @

) 2

P dr_dy_dz 0

Y

Suppose that U=, =D

& are any pair of independent integrals of (1). Let o take apsv
* tleular value, say @, The surface represented by v =%
intersected by the system of surfaces whose equation is €= )
in an infinite number of curves, a curve for each one of the
infinite number of values that & can have. Thus w= & repré.
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gents a locus which passes through, or upon which lie, curves
infinite in namber, that are orthogonal to the surfaces repre-
- sented by (2).f Therefore, since the gencral integral of

Pp+Qo=1 3 ..

is an arbitrary function of integrals of equations (1), any
integral of () passes thlml“h a systemn of lines thag ‘are
b orthogenal to ihe surfaces forming the locus of (2); aniﬁence
the grrfaces represented by (3) are orthoqonal o thasurfaces
- tepresented by (2).
* 110, WW W dbrauhbr'ar or lg
_ Special methods of solution applicabledo certax standard
forms. There are a few standard forms pwwhich many equa-
tions are reducible, and which can befhitegrated by methoeds
that are sometimes shorter than the'gemeral method which will
be shown in Are. 128, These fn;ms “will now he discngsed.
Standard I. Lo this standar@“belong equations that involve
pand g ouly ; they have tha form

OF(p,g)=0. - . M

A solution of tK{lb evidently
T by 46

if @ and b be uoh that #(a, b) = 0; that is, solving the last
equationPor 2, it o =f(«). The complete’ integral then is

\\ 2= o+ yf(a) +e @
&N The general integral is obtained by pubbing ¢ = ¢ _:(9')__,‘}_"1181'6'
'\ denotes an arbiteary funetion, and eliminating @ hetween -
2 =ax -+ yf(a) + ¢ (@)
and 0 =2 +yf'(a) + ¢

v/

* Arts, 110-192 clossly follow Forsyth, Differential Eq“‘“w"s'
191-198, ST
t When such surfaces exist. See Ar¢s. 104106, o j?_l-

Arta,
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The singular integral is oblaiired by eliminauing @ and ¢ be
tween the complete integral (2) and the equations formed by
differentiating (2) with respect to @ and ¢; that is, hetween
z=aw + yf{w) + o
t=w-yf (o), A ¢
oA
. =1 H ¢ "\ w -
the last equation shows that there is no gingular ilth‘gq_f:gl.w
A
Ex. 1. Solve (1) p+ip2=wm?
The sshitigdRraulibr ArHHOTRIRE o2 4 12 = m2

Therefore, the complete zolution is

? 'g.‘
\Y

. x'\\':
(2) z=ux4+ VmE — aiy SN

To find the general integral, put ¢ = Fi) N/

then 2= i + vVt O\
differentiate with respect to u, 'v,f‘;

LN O
2

N Vi - @

and eliminate ¢ by mcangmlf these two equations.

A developahble su%‘%ig the envelope of a plane whose eguution con-
tains only onc variable parameter® Therefore, the geperal integral in
ihis case repl'ese:gft-ﬁ,a developable surface, In particular, if ¢ or fa) be
chosen equaliozéin, then the result obtained by eliminating ¢ i3

:t\m (3) g2 == ?}‘3:(?«'2 + .Z/z)

Th‘a\'ooﬁzplete integral (2) represents & douhly infiunite system of planes;
the,‘iJ}rticula,r integral obtained hy putling « equal to zero represents &

_sinply infinite system of planes passing through the origin; and the ge-

{(4ral integral (3) represents the cone which is the énvelope of the lalter

]} -
} system of planes.

Ex. 2. Solve (1) @t 4 g2 = 22,

This may be written (x‘?—“)k (yaﬁjg: 1. Pat ®ogx, H=ay
p 2ok 23y i@ ¥ '

-:- =dZ; whence X =logz, Y=1logy, Z=logz; the equation thent -

* See C, Smith, Solid Geometry, Art. 221, |
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{ t’._.l’/\" {0/) -1
wox ) Tlar) T
which comes under Stamlurd L

From the preecding examnpe the complete integral is

ZemaX 4+ v Dy loge;

lecomes

~ henee, £ = (‘c“y" T whivh is the comphete integral of (1), The smgl{]ax
Andegral is 2 = 0 s tle seneral integral is to be found in the nsual ways
\ 4
"‘LL 3. Bolve Dp? — 2 =1 pg, P
_n \ ’
Lx. 4, Bolve o= N <{.“
Ix. 5. Bolve gy = I, www.dbraulilﬁm{i'y,org,jn

120. Standard II. Do this sta.nda;d\\b'elong equations
amalogons to Clairaut’s; they have the\form

s=pe bt Kb @
That tle soluiion is o » .
4-—(ta,+{7ly+f(a: b) @

can easily he verified, J‘hm is the complete integral, since
it coutaing two "-Hbltrd&;y constants, It represents & doubly
infinite system of plakek.

In order to oht; fa,\ Le general integral; put b = ¢{a), whﬂre

% denotes an LLL,bu;‘L(L.l v function; then

‘~\;z:aﬁ: +ydla) + fia, o)) -

. N/

: ﬂiﬂel'ﬁ‘%ﬁéﬁe this with respect to a,

O 0 =a+yo'(@) + (@
%Qd lemth ¢ between these equatmns
\ “In order to obtain the glngulaa integral, dlﬁeren’smte

r=az+ by + 1 D) _
with respeet to o and b, thereby getting the equations-

0‘_—::!:4_%, 0-——_?}—!—&39. ST

and eliminate @ and b between these three equations. -
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Tox, 1. Bolve z = pic | gy 1 jry.
The eomplete integral is
s = ax 4 by + alb.

In order to find the singular integral, differentiate with respect tog -
and b; this gives

0=x4h
O=y+a; e

elimination of ¢ and b by means of these equalions gives z = -—:ry»\\,

The general integral is the ¢ eliminant of *":}‘.

2 = az + yf(@) + 4/(a), o ’
vowwdbraulbrary gRA + ar'(ay+ A X0

where f denotes an arbitrary funciion. RN

Ex. 2. Solve 2 =pr + qy — 2Vpg. \ ’:\

121. Standard III. To this stqntfa,ré belong equations that
do not contain x or ¥; they hame’ t:he torm

F (2 39» 9) (1)

Put X for =+ ay, Whele a is an albltmly constant, and
assume

¢ '\*?wf(m +apy =5(X)
for a trial solutipn\ then
) p adzr Xz dzr’ q == dz al @ rzzr
,\‘“‘dl dr  dX iX by ‘ax
Sw\stltutwn in (1) gives ' : :
(\ .
R\ r(z, dz o, BN _ g ¢ @
AN . . dX  dX
“which is an ordinary differential equation of the first ozder.
The solution of (2} gives an expression of the form

d
ax = $(z o),
whenee, ._.{_:z_m) =dX;
3
integrating, Fa) =X+,
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‘and hence, @+ a4+ b= f(z,4)

,.is the eomplete integral.

.- The general and the singular integrals are to be found as
- hefore. y
This method of sulving equations of Standard IIL can be'

formulated in the following rule: )
b , AR )
:;/i' Substitute ap for ¢, and change p o % X being equal to
. ’ .2y 7°%Q .
©+ ay; then solve the resulting ordinary differenhi{a} equation
between z and X. A\

www.dbraulibfa’t‘y,org.in

Ex. 1. Solve (13 #2(p?+ @24 D=2 N

: On putting ap for 4, ehanging p to -%, andsepalating the variables, (1)
s AN\’

I
. becomnes AN
Va1 2% Smax,
o? a2
Integrating, — VETINVE 2 =X +b;

Squaring, and substiinting fqy)r its value a + ay.
(2) (@)@ — )= (x + oy + D)2
This is the E:nmpletf?xibﬁéral of (1}, since il contains two independent
arbitrary constantytnand b, :
Differentiate (21 With respect to ¢ and b, apd eliminate ¢ and 5 ; there
Tesnlts e N\
. > #=e
_ which h&}ééx (1}, and iz thos the singular solution.
- Inéider to find a general integral, substitute for b some function of a,
andeeliminate g from the aquation, '
. :"\}ﬁ Particular, on putting
\‘(“E)b b =—nh— h
/ 12} becomes
@) (@4 1P — = — h+ aly — OP &

Differentiation with respect to & gives the equation
2a(ct — 2= 2y — k)fr — b+ oy — B}
which in v ftue of (3) can be put in the form -
@) S —htaly — k)}ale— By -~ B} =0 RSN
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On eliminating @ from (3) by means of (he first ecmponcs, equation
of (4}, therse appears the equation
2=
and on eliminating 4 by means of the second compouent. enuation, there
comes .
(=24 (y—LkPR42=cn Q)
"The general integral is thos made up of Lhe last two equations, \\?ﬂ[ﬁ
represent two paraliel planes and & sphere.  The planes wivl \Fhél‘é iorm
ile envelope of the cylinders represented by (3). THqualion q} may also
De regarded as a compleie integral, if 7 and }., e takon <1s~,u bm ArY GOn-

stants, {(See Bx. 1, Art. 108 and Art, 112.) m\
www.dbraulibrar y org in \V
Ex. 2. Solve 2(a — pr).
This may be written A~

\
gz3\? <&
( GJ) z(z .~.\C”
dy

and puiting 4¥ for 2, 34X for T (wh,ence ¥=lozgy and X' = logx)
o

the Iatier equation hecomes . \

, Al (,
| (&) == ax)’
which helongs to Standa;ﬂ} II.
76 % A
\ Q)Lx 3. Solve 9('3;-',, + qr_ﬁ) =4,
Ex. 4 S0P + ¢ = (2 — a). s e’
> Ex. 5. .%)h?e pe=1+44g%
”\s
]3\&“ Standard IV, To this standard helong eqguations * that
haf&'e the form

'S ) S, 0y = £l ). @)

) In some partial diffeential equations in which the variable
z does not appear, it happens that the terms containing p and |
@ can be separated from those containing ¢ und »; the eqnation '
. then has the formn (1.

Put ea,ch of these equal e}.pmssrons Lqua,l to an ‘ubmal‘)’
constant «a, thus,

.}{'l(wi._p) = a, fol¥ Q) : &3
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- and 50]\9 11;Lw erptaalions Tor pound g, thus obtaining
P Bay ), g = Py, @)

" Integration ot the lust two equations gives

: %= j A0y e 4+ o guantity independent of \

%I ) Oy
¢,

. and ] Pliuy @)dy 4+ o quantity independert of #. =\

: . \ J

+ These are ineluded iy, or are equivalent to N

P ff o) dae +fF(y} a)dy + by .,wj\i'
www.dbraali h ¥
where b i5 an arhitrary constant. N\ Y ergin
This is the complete integral, since it dontains two arbitrary
eonstants; the peneral integral and: th} blllgﬂ&l integral, if

existing, ave bo be found as betore.
Ex. L Salve g—p+2—y=0. “f‘w

A W

_ A\
Separating g and g from p and 23
ol

q‘ h .y'v: =%
Write g y=p—2=a;
henee p = ¢ 4 ¢ and q :&1},— . snd therefore the complete mtegra.l is
' D= (2 + @) A (y + A4 b
There ix 1o wiwt\lm‘ integral; the treneml integral i8 gweﬂ hy the ““

i

tlimination of tz‘hét“eeu Lo
‘\ Sr=(x+a)?+ {y+ay+re
and \’ 0=2( + a)+ 2y + @)+ (@

I bei4§ &n arbitrary function.
\ ,l"x 2. Bolvep?f-g2= = mad
Henca il = 2 — . Put dZ for z-'}{k'

Ex. 8. Solve g =2 yp2.
'S"EX. 4. Solve vp J—\f“?% 44
k‘i”}""]x‘ 5. golvepz+g‘3-—a:+y ,5‘1!5 ‘i
7 <Ex. 6. Solve 25 =2+ ¢
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ﬂ/{%. General method of solution.* It will he remembered

that, in order to solve some of the ordinary differential equa-
tiong of the first order in Arts. 24-29, another differential
relation was deduced; and by means of the two differential
relations, that were thus at command, the derivative was ¢
eliminated and a solution obtained. The general method ef
solving partial equations of the first order will be fou Q%)
present some points of analogy to the method t,nlpl{)} ad gt the

articles referred to. R N
Take the partial differential equation R4S
www.dbraulibrqy&fxﬁnﬁ.y}wzj} @H=0 \/ (1) .
Since z depends upon  and ¥, it followsthat ‘
z—-g)da:-{—qdj""\“ (2)

Now if another relation ean be folind between @, #, 2, B, %
such as

s S, Y ‘zr 10, Q) G

then p and g can be ehmmated for the values of p and ¢
deduced from (1) a,nd\ {3) can be substituted in (2). The
integral of the o (hgary differcntial equation thus founed in-
volving =, , AN ’\ll satisfy the given equation (1}; for the
values of p and ¢ that will be derived from it are the same
as the valued ot pand g in (1},

A me@h}d of finding the needed relation (3) must now be
deviged~ - Assume (3) for the unknown relation between @, %% |
By q, which, in connection with (1), will determine values of p

~dnd g that will render (2) integrable. On differentiating (1) and
\ (U) with respect to » and-y, the following equations appear:

* This method, comumonly knewn as Charpit’s method, in which the -
non-linear partial cquation is connected with a system of linear ordinary
equations, is due parfly to Lagrange, but was perfected by Charpit. 3
was first fully set foith in a memeoir presented by Charpit to the P@ﬁ’ ’
Academy of Sciences, June 20, 1784. The author died young, and ¢

- TEmMDIr was never pubhshed
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aF  aF aF 3p OF g

) 'EP-F@ Er—:_i-&q 6.7:20’
o ., ar ardp  drdg _
o VP T e Togas =0
oF OF  OFap oTog_, M
G T YT ey ag dy— (\)
'\
ar af af dp . Af dg AN
il pcl = £ ot ==, AN
dy +Bz g+6‘p oy +6q oy ) AN\ 3
s O
The elimination of ¥ between the first airfg\f these equa-
Hons oy de www dbrauli vary.org.in
| 1ons gives O
- [AFy 8F Y OF oF _OF 9\ @a3r af _9F o\ _ .
3 (a_x ap ﬁib‘ag+p<¥@*$$ 5%\ 3 i3 5) =

and the elimination of ? betwedn the second pair gives
Yy \

a3
e

(P _aran, (o0 kL or D) (ALY,
dy d¢  3q oy g(a_z" dg 9 9z) y\dp g oq op/
On adding hhe,ﬁ{é.{inembers of these two equations, the last -
bracketed termsg cancel each other, since
) N dx  dudy Gy L
hean{ag.}l’ding and re-arranging,

JIF | amNar | foF | eFNaf, [ OF _ aF\af
."\..";{;9;4-1) )'+(—+q )~+ Pap qaq dz

& jop  \oy | 9z)0g

+(_— 6p)8m+( dg / 8y

This is a linear equation of the first order, which the auxil-
iary funection £ of equation (3) must satisfy. This f:orm h?S
been considered in Art, 117, and its integrals are.the integrals

- of '
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dp dey iz
oF  OFTOF | GFT_ 9F _ 9~ ok
& & 8y 8z dp dy
Ay af
TS9P0
K8

Any of the integrals of (5) sabisfy (4); if such an m{en'ral
involve p or g, it can be taken for the required sccond 1e]at10n
('3) Of course, the simpler the infegral inve ﬂx ik, or g, or
both p and ¢ that is derived from (5), the caséefavill be the.,
subsegqwend labo ibrgngling She solution of (N

This method is applicable to all partialdilerential cop la.tlond
of the first order; but it 15 often better.‘t.‘t.\euqml(, whether the
equation to be solved is reducible tague of the strudard forms.
discussed in Arts, 119-122. The tédﬁetion anil the snbsequent
integration by one of the speb}&l III{.,ﬂl()(]b is wenerally, but nob
always, less laborions thanwglie integration by the <fonera1
method. By applying thu ,genelal methaod to the Jinear Pqua-n
tion and the standard ﬁm ms, the integrals obtained in the pre-;
ceding sectiong are ﬁa:sﬂy obtained *

Ex. 1. Solve \\ ,
{1y p(e¥ + 1)+ (b —2)g=0.

Here equa.tlons (8) Art. 123 reduce to - ¥
@\@ A dz iz A
P @ pPtpt(b—2)g F+I1 T bt e

) \'%le third fraction, by virtue of the given equation, reduces to %‘ {
|\ :'o From the first two fractions, there comes, on integration, g
o = ap,
where a is an arbitrary constant. A
This and the original equation determine the values of p and g; 3‘“" ¥
Via(z — b} —
p= u(z —B =1 1 =Valz —b)— 1.

41

*See Forsyth, Dw’emnnal Equations, Arta. 903-207 ; Johnson,
ential Eguatiom, Arts 288-203.
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"'I‘Subsaimt-iou of these values in

dz = pde - gdy
L &
T gires dz = (’}“ o+ d:;) Va(z - -5,

:.Where the variables anm geparable ; this on integration gives \
: O\
e ¢\
Bvia(s —b6)y— 1 =2+ ay+ b .’\ -
There is no sinmlar sclution ; ; the general solntion is ()hte.msﬁ it the
- sual way.

_ . This equation comes wnder Standard I71., and the ratigs Eosen from
u {2} give she yolasion ¢ = tip, which is used in the spadidl yethod  Had
there boen chosen the eqnation formed by ancther Wit of ratios from

-~ (2} say from www.dbraylibrary o g.in
% dy__dr ¢ ;'\
¢ Uy
- &nother contplete ntegral would have bem» obtamed namely,
t r—“ﬂd‘d‘—'—’-r‘—‘—‘—‘-
3 . x4+ T - —
(o @y 7 m _ =0,
- SEDTE: \j( R\ +1}+y+ﬁ

]
Ir."“":* 2 Solve r = py by the g,ener’a,l method,
E” Ex. 3. Solve fga— -y —nqz ..
. Ex. 4 Salve the line 1 eq\tatmn and the standard forms by the general
" Wathod. \ )
\ b % < g
Parrray, ﬁ[rFDRE\rTIAL EquaTions oF THE SECOND E
) AxD Hicner ORDERS.

'\ oo
Phrttal equations of the second order. In this anﬂ the -

fﬂ]lo\m avticles* a few of the simplest forms of pastial dif- <
fere;&rml equations of the second ovder will be briefly consgid-e. -
el'etl hardly more will be done, howaver, than te indicate the
methods of obtaining their solutions. "Some of these equationg- H
are of the highest importance in phys:ezﬁ investigationa!

In what follows, z being the dependent vatiable, aud = and g
the mdependenr r,om L mll denote t:he seeund derivatives :

* In connection with these atilcles read the ’“er’ ohy l *
W. E. Byerly, Fourier's Sm Bla ﬂaﬂﬁ"@“ Hortonios.
dﬂ«a T
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&z s s %

R s-_axay’ “6;

1
There will be discussed linear equaticons only; that is, equa-
tions of the first degree in 7, s, ¢, which arc thus of the form

Br+8s+Tt=1V,

L\
where R, S, T, V are functions of =, », % p, 4. The coml;i"ete

solutions of these equafions will contain two arbifrary” fone
tions.* In Art. 125 will be given some examplo&o‘f rjuations
that are readily integrable, the special method/of solutien
nueb%mp&lﬁr% ERENR and in Arta 486 will be given
a general niethod of solution. ) \;

125. Examples readily solvable. J§ Ls\to be remembered that
a and g, being independent, are uunqtant, with regard to ea.ch
other in integration and dlffm,en)‘datlon

TS 1 Solve S% —% . o 0N )

dxdy ¥ N L)
Writing it AN dp_» )
riting i .»\ fZJ ¥ + %

integration with reg@d ’c.o ¥ gives
> p=xlogy +ay+ ¢,

the constanh \\Htxh regard to y being possibly a tunction of
Integ,t’zmng the last equation with regard to x gives

"\s
N N\ z= _f{a: logy + ay + ¢r(x) e,
.f:’o P
) = ~2—10gy + ey + o(x) + vy,

the constant with regard to « being possibly a function of g

B - 323 82:
Ex. 8 Solre 22 £ OF prpy. B

Rewrite it, dp -
dy-}-pf(x) Fly).

* See Art. 100, Ex. 5.

N
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T his equation i linear iy p, aud » is constant with regard Lo y ; hence
. integration gives )
r= e"”‘““’” O F )y + ¢(2) |;

and integration of this with regard to x gives
N

o= fe vl fwnarmag + o | far v O

Ex. 8. ar = uy. \J

Ex. 4 zr={n-1p <

126. General method of golving Ry 4 Ss + 7% ;K".On writ-
ing the total differentials of p anﬁlfﬁ,w.dbrauljbl:dr:y.ol'g,in

dp = rde 4 sdy, ’:‘,\\“Q
dg = sdz + tdyy";\

W

the elimination of » and ¢ by means 0f {hese from the given
equation, : N

By 4 SR Tt =, @)
gives (R dy oy + Ty da —"‘Vt;l':.ﬁdy) —s(Rdy*—Sdudy+ Tdzh=0.

If any relation bemfé&i ©, ¥, 2, p, g will make each of the
bracketed expressiohs vanish, this relation will satisfy (1).

From \Rdy“ — Sdady + Tde* =0 . @
Blpdy + Tdgds — Viwdy=0
and O dz = pde + q &y,
\\ )

it P‘li%:\' he possible to derive either one or fwo relations between
8, 2 p. g called intermediary integrals, and therefrom to
M&duce the general solution of (1). For an investigation of
the conditions under which this equation admits an interme-
diary integral, and for the dednction of the way of finding the

————————

* These are callad M onge's equations, after Gaspard Monge (17‘“5"'1818); :
the inventor of deseriptive geometry, who tried to integrate %qua,tlons oi-
the form Jor + &g + Tt =0, in 1784, and snceeeded in some simpie cases

The method of this article is also called by his name.
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general integm.] see _]wrsyth, D{]}‘?ﬁ}'enfa}.?l Eepuadions, Arts, 298
239.  The statement of the method of solution devived from
this investigation is contained n the following rule:

Form first the equation

Bdy — S8dedy + Tde =0, (3)
and resolve if, supposing the first wmember not a vm{}ple’fa
square, into the two equations g

dy — myde =0, dy — malis == 0. 7 ( 3 (1)
Irromy the first of fhese, and frem the euasion \\

Bdpdy + Tdgde — Vel (3)
comlyjned Elfbﬂﬁfﬁﬁ'iw Brlghmdz =p d.'.z, %g\rh; ubtadn two inte-
grals u;=u, v, =5h; thep PN

y —fi (‘1)

where f; is an arbitrar ¥ fnncm(in, is an intermediary mbegral
From the second of thelcquations (4), in tlhe sume Wy,
obtain another pair of mtewrals, My =et, vy =03 then

"Q}\ ?fg—f (?a)
is another 111ter111\9( ary integral, 7, being arbitrary
- To deduce, 'thp final integral, either of these inter me(hzmr‘i'
integrals Jnay’ be integrated; and this must be doune wher
m = Mg NWhen m, and m, are unequal, the two intermediate
mteg{*"ﬁs are solved for p and ¢, and their values substituted in
dz = pde + qdy,
\&'hth when integrated, gives the complete integral.

3
Ex. 1. Bolve r — e = 0. (This equation is solved Ly another method
n Art. 198.) '

Here the subsidiary equations (4) and (5) are
(1) wtade=0, dy—adn= a,
(2) dpdy — dxdg =10,

Hence Y+ ak=cp, ¥ —ax =cs
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Combining the first of equations (1) with (2),
dp 4wl =0, whenee p - ag = oy = Fi(y + az);

sombining the seeoowl af (13 with (23,
dp -- iy = 0, whenee p— g = ¢’y = Faly — ax).

From ilie last Lwo intesrals

P =50y oee)+ Fa(y — ae)], O\
and IR _1_['}'?.(3; 4- ax) — Fay(y — a.x);l, ’\:\ ’

Sribstitution of these valnes of p and ¢ in dz = pdr+ gdy,“gweé on re-
arranging terms, €%
92 S [EN 4 ) (O + i) — Boly — an) (e dn)],

whlch is cmf.t Inirgration gives
=gy + ax) ¥Y¥y dh}@u\bral y.org.in

et
The cquation in this example, -Cﬂ{ a® (3‘?-{ X 0 is a yery important one
ot

n mathematival physies. Tt is calleds the cqualmn of vibrating cords,

sinetime: 1Y Adembert’s equation, fa'um the name of the geometer who

first fntegrated itin 1747.% 1t ap.pf\a,x-, in ¢onsidering the vibrations of a
stretehed elastie siring, ¢ lheing"™ the time, y being messured along the
String, and Leing ihe smoall Mransversal dmp]'l.(.emont of any point.
Thiis equation also gives thre\] Inw of small oscillations in & thin tube of air,
for instance, in an org fipifle.  The functions ¢ and § that appear in the
general soliion arg 0 be determined from the given initial condilions.
Es. 2 ﬁ‘*-—qa Ex 3 «% 4+ 2xys +y% =0
127. Thé\geneml linear partial equation of an order higher
than the{fipst. A partial diiferential cquation, which is linesi,r
with I:;%U:t to the dependent variable and its d.e__gi\-‘a,tives, ig
of ﬂle form

s'"' "z da"z {Jz a1z
\3 1 6:3:“+A 6 !!—]a + +A + x" 1+

-]—ﬂff8 + ng+R3 f(m}y): (1)

* Jean-le-Rond WP Alembert (1717-1783), who first announced in 1743,
tle principle in dynamics that bears his name,’was one of the pioneers
In the stdy of Zifferential equations.
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where the coeffivients are constants or functions of = and %

On putting i1 for '&% and D' for u%r’ this may be written

(D" + 4D D' oAD" 4 o + MD + ND' + Py

=S 1) (2)

or briefly, F(D, DYz=f{en). "{.}j‘
As in the case of linear equations hetween two »hna,bles-
(see Art, 4%, the complete solution consists of tym “ats, the

complementary function and the particular integ 7‘{1[5 the comple-
mettary funetion being the solution of

F(D, DYz =0. ) @
INTA (s ‘fugbr?,}' OTEIL 2 be sqlﬁ}i:dns of (4),

) _ 7= G + Gy fg—z-.‘-’ + &2,
is also a solution. _ AN

Other analogies betweepz’}iﬁear partial and linear ordinary
equations, cspecially in methods of sclving, will Le observed
i the following artic{m.

i Y

128. The hombgenéous equation with constant coefficients: the
complementary function, All the derivatives appearing in this
equation arg 8l the same order, and it is of the lorm

'\(A‘,D"-{-AD" 1D e+ A, DY) 2= fx, 7). {1

If\lt be assumed that z — é (y + ma), differentiation will
shm}* that

.\Dz = me' (y + ma), D'z = m"$™ (y + ma), D™z = ¢ (3 + mit)
“and, in general, that :

Lrirt = w9 {y + max).

Therefore, the substitution of ¢ (y + ma) for z in the first wen-
ber of (1) gives (Agn™ 4+ Aym» 14 oo 4 A)) ™ (i + ma)- This
is zero, and wnsequent]y, ¢ (y + ma) is a part of the COmPIB‘
mentary function if w is a root of
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}un’c + L?h’,”_I 4o + A= 0, (2)

which may be called the auadiory equation,
Suppose thak the n roots of (2) are my, me, .-+, m,, then the
complementary function of (1) is
2= iy ) + by + md) + o+ by + ), (O
NS ©
where the functions ¢ are arhitrary. The factors of the-to-
efficient of 2 in (1) corresponding to these roots are D=y, D",

D=y o, D —m,1)'; and these are easily s{own 10 be
commutative. (Jompme Arts. 50, 54.) -

Bince e™7¢ (i) = (1 + maD' + 2 me D" + )b (1),
W w,d pﬁshbral V. org. in
~¢®+mx1@+i,”@+

—¢@+m®h%

the part of the O.F. correspmld‘mg to a root m of (2) may be
Wlltten Pm”"¢‘\y) 3 _
d%z 3% RS
Ex. 1. S aa@f 0.¢ @ee Ex. 1, Art. 126.)
Here (2) 1= m2 — 32 \‘! whenge r has the values + ¢, —a. Hence
the golntion is » = ¢(y T oax)y+ ¢ {y — ax).
Ex. 2 1igalee OF. of % 0. 8% 4 082 0y
\&K bk 5’+ dedy | oyt
D1 _ 2 _5 3_2_5.—_:::3;.

Ex, %04 the C.F. of &% -
3&& e oF.of Fo T 600

1:29 Solutien when the awuhary equation has repeated or
magmal’Y roots. As in the case of equations between fwo
variables (see Arts. 51, 52), further investigation is required
when the roots of (2) Art. 128 are multiple or imaginary.

The equation corresponding to two repeated roots m is

_ (D —mDYD—mDYz=0.
o1 putting » for (D — mD")z, this becomes (D —mD)v = ?,- of
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which the solution is v = ¢; {# 4 m r,) Hence
(D — Dy e = ¢y + ma).

The Lagrangean equations of this linear ecquation of the fist
erder are

: d?; dz
dr = -
m iy i 1’) O\
The integrals of these cquations arc y +mw=a, 2= 2$(d)+ by
and hence, ' . )

= (y + ma) + ¢y + mz). "'( N

By proceeding in this way it can be shown i«h\t Srlien a roof
. 1z repeated  times, the corrcsponding pfa,li of the comple
mentary function is \,

m"‘q&i’fg‘f—iﬂ?ﬁri —Ll ’I'%l(,‘b%(?r #w JETER +.M;5\_1(t.f+ )+ b, {3+ ma).
‘When the roots of (2) Art 198 hre imaginary, the corre
sponding part of the solution L.,fm Ye made to take a veal form*

Ex $2_g 02 44 Oy ',63?
ot gxigy axavﬂ oy

130. The pamculg:r\ntegml Equation (1) Art. 128 being
expressed by F(Q\})*J,a = ¢ (@, #), the particular integral wil

1

¥ being defined as
!)(f;)( JJ) F(}) Dr ? 111
that funrtum which gives }7 when it 1s opewated upon b}'
F{D, }9’)\ (Compare Art. 57.)

l:}jkért 128,
At (3 )=

he denoted by F (I)l T

r i . 1
— D' D — D’ D

Al
It s easily shown that it follows from the definition of
V that these factors ave commutative. The value

»

—— & (z, ¥) will now be indicated. Tor this purpesd.

J—

F(D, 1)

of ——
Dy

* Ses Johnson, Differentiol Eguations, Art. 819 ; Merriman and Wood-
ward, Higher Mathematics, Chap, VIL., Art. 25.
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1t is first neccssary to evaluate (J} ~mD) ¢ {x, y). From the
latter part of Art. 128 it follows that

e " (2, 1) = ¢ (v, y — mz);
therefo.re, Dol (m, ) = D (2, y — ma).
Mrect differentiation shows that ) L\
Dy (@, ) = e (D — mD) (2, ¥). o'

From eqnating the second members of the last~~tfw6§equa,-
© tions, and operating upon these members with e 4t follows
that )

(D — D) (@, y) = e D (x, 1 >ma).
- That a similar formula . www,dl?{‘{il:!}bl'&l’yﬂl‘g,in

1 O

Tt = e”fﬁ’ (@ y — '*‘m)_ @
holds true for the inverse opfal{'htox- is easily verified. For,
the application of 1) — m D30 both sides of (2) gives

& (2, 9) = @~ mDYe Lo 5, y - ma),
'\...: D
N > (D — mDYye™ " (w, 1),

on putting ah fﬁ“; ) for —1-¢: (z, w—mz); and, therefore, by
Art. 128, O3 "D
§~\‘?f’ (@, 3) = (D — mD")y (x, y + ni).
Bi"?ﬁ the seeond member of the Iast equation is also the result
|36 would be obtained by putting y +me for y in Dy (&, ¥)
“Niffer the differentiation had been performed; and this would
“be é(z, y) from the definition of y given above. Hence |
ﬁ_:l_q}zﬁ‘b (=, y) ean be cvaluated by the following rule, which
i the verhal expression of (2): form the function ¢ (x, ¥ ——.mx),
integrate this with respeet to @, and in the integral abtained,

ehange y into y 4 man
N
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The value of the second member of (1) 15 obtuined hy
applying the operations indicated by the factors, in succession,
beginning at the right. Methods shorter than this general
method can be employed in certain cases, which are referred
to and exemplified in Avt. 232, Ex. 2 also shows such a case.

Ex. 1, Find the particalar integral of Ex. 2, Art. 128, ¢ \,,\.’
The particular integral : s\
I S SRR RN P
“Hspr e TV e Qi "
1 pl 1 o 1
- 9 = (Pl N = ———m
=" 5 Eety) D150 - (a +:~‘\u ) D+2D‘W
W . lipr QI
AP TR 2 m* ZY-.
Lyl

Ex. 2. Evalnate L oo + ,b'y):“ In this case a short methed

F(D, DH "

N

can be nsed in finding the integl‘:!,l-”. \ N
Since F(D, D'y= D“F(%}: ahd % ¢(az + by) = ", and consequently
) )

K

F(%) elar + b= F(%}}lt follows that
Ny

2l

PN

\’:\“ S j‘-“---'fqa(mc—}-by)(dx)“.

NS #{]

] '
When is & Toot fF(D') : n :(Df__‘2> (2) and
"\ " TonE o D 0, they F I > ¥ o) ]

) ) the integral is—-l—b—- T}J_}_J”j‘...j‘(p(rm: + By {(dx)n-l; ihe latier .
9y piil B
w(ﬁ) (D a) : '

expression ¢an be evaluated by the general rule.

1 1 11
L -1 11 B
F(D, D M?f"fg}y) - F(D") elor + 0= o f(.fi) G y}_
O, & T

Ex. 8. Find the particular integral of B 2B g
. 2 oy*
Ex. 4. Find the particular integral of Ex. 3, Art, 128



$ 131 THE NON-HOMOGENEOUS EQUATION. 176

131. The non-homogeneous equation with comstant coefficientsy
the complementary function. In order to find the complement-
ary function of (3) Art. 127, that is, the solution of

F(D, DYz=0, )
first assume z = e+, (This procedure is like thabt of Am
50.) The substitution of thiz value of z in F(D Dha glvé&
el Kyett%, This is zero if : \
Fih ky=0; N @
and then z = e i3 a part of the wmplemenka:@ “function.
The solution of (2) for & will give values fi(B), fiBire -, fi(R), if D'
is of degree r in (1). The part of the solution of (1) corre-
sponding to k= fi(h) is See A dBrd ﬁiﬁg@ggmtgqninﬁniw
series obtained by giving ¢ and % all Pésdible arbitrary values;
henee the general solution cor respondmg to all the values of-& is

7= 2‘(, ety + 1:'(’ emmrm + N Ecrehm—f,.{h)y

This solution can be puttd m "a simpler form when f(&) is
Jlinear in h, that is, when jne=ah + 5. In partienlar this is true
of the lwmogeneons e.g a,'rmn which is, of eourse, a special
ease of (1). Exs. Qﬁg’ 1ls's1at9 these remarks. FEqually well
may (2) be solved for 4 in terms of k, and another form of the
solution will he obtained, as in Exs. 1, 2.

Fx. 1. aa.,\ az,
(Y oyt
HE"UQQ“) is R*— k2 =90, whenee & =&}, and thus the solution is
¢ "“?zﬁ“**‘; where ¢ and A are arbitrary. Partienlar integrals are
tained by giving k partienlar values; for example, the values 1, &, &
o x give the particular solutions 7 = et¥, 2 = perily g = gleth -V;
If equation (2) be solved for A, the particnlar integral is Begks+4,
ux.g o2 _d2dz_ 9%, 482, 507 ¢
ér* fdzdy o dx oY
Here (2) s 232 - Bk — %2+ B8R + 3 % =0, where the values of & are
—2h, b+ 3; hence
7 = Zegehle—I) | Tpgehivty)by — Beyehi- ¥ + EWPrgatlate),
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Since each of these serics consists of terms having arbitrary coefficlenty
and exponents, i can he vepresented by an arbitrary function, Conse-
quently the solution can be represented Ly

. 2= plz— 2y)+ NPT + ).

'The eqnation above might have been solved for %, the values heing
— ‘?—‘:, k — 3. Henee, ¢\

9 " .

k4 { \

"

2 = 200 D) gzt -ne= sb( —’)—n (:HJJ

pe)

is another way in which the solution may be written,

Ex. 8. Solve Ex, 1, Ari. 128 by this method. llers ];1 raluez of h are

ak, — ak, and hence
z = Deyetlytent 4 Begetlv-axl — ¢y %,méq- \IL-(-y — e,
Esy b Bipfatbh sestiyespginry functiog 'ﬂ\f‘
P _d% 502 ai‘w-' 1 ogrily,
o= gyF  da T’ g e
Ex, 5. Find the complementaygy hmctmn nf
R >
det dudy oy

—z=cus{e+ 24 e

Ex. 6. Find the con%plbmenmry function of

132 The“pﬁrtmular integral. The partieular integral can be.
ohtained \u"t}ﬂ‘t‘un cages by methods analogous to those shown
in 4 1'@ 60-64. It is easdv shown, by the method adopted

in y\\tq 6062, that — 1 . ge=tb Lt gect, tha
(D 7)) (o, )

, 1 ‘ |
; = ' sin (a0
sin (o +by) o — -7 sin {(aa-+b)

o 1

) F(I% DD, D'y _
and similarly for the cosine; and that Vo I)l 7D, DY a7y’ eab bB_.
evaluated by operating upon a7y with [F(D, D] expanded

in ascending powers of D and D"*
— . — —_— _'_'_'_._'_'_‘

# Tor a fu_ll dlSC‘ilé\SlOIl see Johnson, Differential Eqnalions, Arts, 323"':-
334, |
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Ex. 1. @7 8208 @2 582, 400

i
dxt O gy oy I dy

The complementary {unction, found by Art. 131, is
oy — &)+ e 2P 201 ).

The particular inlegral is

. OV
1 _ Yz 2] \\ “'
F T —TITI3 D+‘>Eie b 4 ain(2 x+y)+my:§: D
s O
. _—Iw_ alr iy — 6k+3”_ ."2\\ S
D:_pp —2ptir2pyed T —10] (™

N
i \’

—— —_sin{2%
iz nan H")\\

ot 2= =ty Lsin Qe v+ oy

br h‘bral y.org.in
1 “i“'zﬁi B
= SHT D) sin{Zx -+ y)= b:}!m 2zt y)y
(T E30) 33'4
6 «.:’.“‘
1 «d = 1 1 .ay

DD s DRl eDn iR DrD D2 12

¢“\
Sl (NN 2D (Do2D)N,,
2 D+ OV 2 4
A
Q mxi —Lfy+x—1)
"t\ 1 D S AP UO PO |
’"fiz ml——)(:u ty+o—1)=g(my %y‘ 5 Hie—1)
O
‘r‘&,\ :fi(ﬁe;ymayufamﬂwx—m).
N®
) “ Therefove, the general solution is

/

Fe=gly — )+ e 2o+ Y-y e"‘”*‘-" —6008(% +9)

+§£(6xy—6y—2x2+9x—]2).

Fx. 2. Solve Exs, 1, 3, 4, Art. 130, by the shorter methods.
Ex. 3. Find the particular integrals of Exs. 4, §, 6, Art. 131,



\

182 DIFFERENTIAL mm TIONS. [Ca. 11

133. Transformation of equations. Lhe lineur partial ditfer-
entinl squation with variable cosfiicients, like the linear equa.
tion beiween two variableg, may sometimes be transformanls
into one having constant coefticients, In particular, an equa-
tion in which the coefficient of any derivative is of a degree
in the independent variables equal to the number 111dlcatm0'
the order of the derivative, is thus reducible. This 1s 11‘11;5-

trated by Ex. 1. (Compare Arts. 65, 71.) \ O
Ex 1 w82 _pd® 00 .02 2O
X % g — ¥ E: y5J+ E D

On assuming u = logx, v = log ¥, the equation takes the form

2 2 .
az G2=0, N\

a e l

WWW. dbrauhbral ¥. or ge ’
of which the selution is 7 = u + L ‘,b(u 5 *v)

The substitution of the wlues, of w, v} grvm
= ogen) + (R ) =) + 7 (2)

Ex. 2. ng—'ﬂf—-yxiaa;;-{-éj’a"—]—l’ya“‘-—xﬁﬁ

Ex. 3. 182 10y W @1 gz,
u? Gt sr\\if o oy

134.* Laplace’s equation: v = (. The equation
AS .

\) v v dw 1
. \ o T ap T o O @
usu'ﬁly written 7o =0,

and commonly known as Lapla,ce:aT equation, is ope of the

s; ““equations most frequently met in investigations in applied

mathematies, appearing, as it does, in discussions on mechar-
ies, sonnd, electricity, heat, ete., especially where the theory of
pol@ntlaﬂ is involved. _
e o I
* Arts. 134, 130 138, are merely notes. .
¥ Because it was first given, in 1782, by Plerre Siméon Laplace (1749'
1827}, one of the greatest of French mathematicians.
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For instance, if }7 be the Newtonian potential due to an
aftracting mass, af any point 2’(#, y, #) not forming a part of
the mass itself, 7 satisfles (1);# again, if T be the electric
potential at any point («, y, 2) where the electrical density is
yero, V satishies (1);1 and, to give one more instance, if a body
be in a state of equlhbrlum as to temperature, » heing th‘e\

temperature at any pomt. — =0, and v satisfies (1). Iff( b &)
denote any value of » that satlsﬁes (1, flmpmey=c i the first
two instances is called an equipotential 3urf¢(,e, gnd n the

third an izothermal surface,
On changing to spherical eo-ordinates by titke tlansformatwn :

(1) becomes § \
9% 1 3% ga_v}_cotﬂa'v 1 a%_wo @
r

— ——— — = )y

6?‘ v r? g #sin?d d¢?

ERRr T
which may be Wnttpn“,\
1 5 O N 1 9 i 1 6%} o
6 1 le; @
{m < 61)+ sin ¢ 66( s 69)+sxn26 a4’ ! )

and if 0 bod 9 it will take the form

“\ Flor) | 8 1 ™ _ g 4
\ e 9 +6yj(1_Pg)a f‘f' za‘ﬁz ()

&

al

K ‘ﬁ’fl“fle subject of Spherical Harmonies is in part concerned with

) 3

* 0. 0. Peirco, Newtontan Potential Function, Art. 28: Thomson and

Tait, Natural Fhilosophy, Art. 491. »
1 W. T. A, Emtage, Mathematical Theory of Electrivity and- Magnet-

ism, p. 14 .
¥ Todhunter, Differential Cafczsi,’us, Art, 207 ; Williamson, D‘iﬁercmm

Caleulus, Art, 323 ; Edwards, Differential Oalcnﬁ%, Artt. 532, The equa-
tion as given by Lap]ace was in the form (2}.
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the development of fonetions that will satisfy this equafion*
A homogeneous rational integral algebraic funetion of @ g, 2
of the wnth degree, that is, a function of the form »f(8, ¢)in
spherical co-ordinates, which is a value of » satisfying (1), is
called a solid spherical hurmondc of the nth degree; and f(f, ¢)
is ealled a surfuce spherical harmonic of the nth degree.  Spher
ical harmonics are also known as Laplace'’s coefﬁcients.j‘.\' .
If v be independent of ¢, (3} reduces to « M

S,
7
S

#(rv) 1 8/, .t A\ 3
— s — = 0. ot ¥ i 5
"5 ' sind 90 ("m ¢ aa) K¢ ©

On putting » =P, where I is a fanghdad of § only, and
changing the independent variable 8 b{:iﬁea’,ns of the rtelation
p = co¥ey Fhraudifgagy org.in

A

di(j. — 1) L AGT 1P =0, )
M AN :

which is Legendre’s equa-t’;i(i’l')’,’ Art. 83 A funection that satis
fies () or (5) is called a suifuce zonal harmonic, A particalar
¢luss of zonal ha,rmon:i:cs is also known as Legendrean coeffi-
cients.i Fora ‘sr\@éiaﬁent of gpherical harmonies, see Byerly,
Fouvier's Serics_and Spherical Huarmonics, Chap. VL., pp. 19-
218; and _ofyzenal harmonics, see the same work, Chap. v,
pp. 144100

In ;s.géﬁgtl cases (1) and its solution assume simple forms;
twq\\&'ﬁnﬂlese will now he shown. '

I—

K ’* See Willilamson, Differential Calenfus, Chap, XXIIL, Axls. 332~
\ “\837; Edwards, Diferential Caloulus, Art. 180 ; Lawb, Hydrodynmnits,’
) Fd. 1805, Arts. 82-85; Dyerly, Fowrier's Series qnd Spherical Hor-

nonics.

t So ealled after Tapiace, who employed them in determining ¥ in 3
paper bearing the date 1782.

i After Legendre, who first introduced them in & paper publisbed in
1785. Tegendre’s work in this subject, however, was doneo before that of
Laplace (Byerly, Fourier's Series and Spherieal Harmondes, Chap- Ko
p. 267). See Ex. b, Ark. 82, .
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135. Spectal cases. In the ﬁt‘bt instance given in Art. 134,
suppose that the attracking mass is a sphere composed of cop.
centriv shells, each of uniform density. IHere v obviously
depends only npon the distanee of the point P from the centrs
of the sphere, and hence (2) Art. 134 reduces to ‘

'y | 2 dw
— =0, ¢
PR 8 "
whieh on integration gives W M
v=d 5 R )
) y :

4

~\
Eguation (1), in which » depends uponl¢\glone, can be
obtame(l directly from (1) Arbk 134 by m%ns of the relation
=ty 42 For, dv_ dy a\gw (%nga lrbrary org.in

@ dr d2 ;"d:"
v 1 du :sfdv & d%,

o 7 i o® " A art
and on finding similar, “alﬁés for 312, gv, and adding, there
results (1), K\ Y

For the disousd Oﬂ wnd integration of (1) from the point of
view of mec,hcnu(q, sce Thomson and Tait, Natural Philosophy,
Vol. I, Part %, p. 35.

If the puinh P'in the second ingtance of Art. 134 be outside

of a upiférmly electrified sphere and at a distance r from

. the t‘%‘me. obviongly 6%~ 0 and gé" 0; and equations (1)
3{1d %2) follow as before. For the intorpretation and applica-

\#6n of this result, from the point of view of electricity, ses

"Emtage, Mathematical Theory of Eledricity and Magnetism,,
pp. 14, 35, 57.

Again, b!.l]_)pOSB that the attracting body in the first ingtance
in Art. 134 is made up of infinitely long co-axial eylindrical
shells, each of uniform density, the z-axis being the common
wxis of the cylinder; or, that inthe second instance P is & point



186 DIFFFRENTIAL EQUAIIO’\*‘-‘ [CH XIL. .

outsuie an infinitely long conductmg cy]mder uniformly
charged with electricity, the z-axis being the axis of the
cylinder. Since in these tases v depends only upon the dis-
tance from.the axis of the cylinder, that is, upon 2* + 57 (1}
Art. 134 reduces to &y de

0
d?""+dr ’ N

which on integration gives

N

ra‘;=z110g£; orv=C—dlogrn, A
T -  {
For discussion of these and other special éases, see the
works referred fo in the former part of this srticle, and also
B. O. Peirce, Newtonian Potential Fma.ctioga{\; :

136 PHARHMIRFENATE UPy = — L5 CIF in (1) Art. 134
the second member be — 4ap, p bemg afunction of =, ¥, 2, then”
there appears the equatlon

6‘21;

— —4 1

o S =4 O,
which iz known as Porsson s equation* An example of its
geeurrence is the follo\vmg T Tf p be the density of mabber
at the point (=, ¥ z&in the first instance in Art. 134, equation
{1y Art. 134 ta,kes\he above form. In the case of the sphere
descnbed in Art 135, the eguation becomes

, X

.3_

. &y | 2dv
s @ _ g
Y @ Trar TP
aml‘%é’ first integral is
~' : -Jd'” _._ f'ﬂ L% R 7
f? ' dr dm b 7 =~ M,

' where M denotes the whole amount of matter within the.
$pherical surface of radius ». In the case of the co-axial
cyhnders the equahon becomes ' e

# 8o called from Siméon Denis 1*oisson {1781-1840), who thuq extendell
Laplace’s equation.

_ t Bee Thomson and Tait, Naturnl Philosophy, Art, 401,
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{ aod the fivst integral is
] ’ el
¥ f-j—t— =c—4dx p?'(ff“
i
p \:\‘
EXAMPLES ON CHAPTER Xil. ¢ '\
L oap+ pg = uz 4. (a—:c)p—i-(b—y)@x:r—’

2 (42— wp—2 gyt 2az=0. 5% (y+sz+(s+x)§q:w+y
" m@+y@+5§:"m+ﬂf 6 a{p+ o)=x'a ,}
Yor T Y er T tar

o i
i
- W‘?‘ T (e —2at)p 4+ (2 yi x“y)q 9‘?("33 ¥
8 =gV T LA M!}}‘blaryfg An

9 (@ —y)p+ (P —em)g =2 —aw. 15. p'2+ ¢ = npq.

10, =P G- _2-y \13. z—pquyﬂc\/?:m-@“
- ye ze oy o8 -

‘ ks 11, COR(% - wip + sindx + y)q\_‘l_:z' 17. VEJ"!' ‘/E =1 C J ‘;'b’r’
W12 5% = 221 — py). 2 s, g=ap+ M:%
18 g =(z+ 750 ¥ i"’3\ 19, p(l + g)=¢ '

: };3& 20 b md e complete integrals of py =px + ¢%. - .
A
0\21 @ 0 i é’?ﬁ 58 pg = 2yt 4
' 632{~{x+y>(p +q)2+(«:—.¢><p—q>)~1
. (L\ ey —pr)=(p — % et et =1

I\ ———
o\ 1 24 ==
DN o= G P 8 g% — 2pgs 4+ plt =0
:?s."m - p = 95y a7. S~E P 38 9 pgs + =y
N 20 +q>-r—<p+q+2pq)s+p£1 +p)=0.
33 p+r=2uxy +

3. yr=(n— Ly +a.

i1. éc: -"-d(m)—F\J) 34, s=oy
85. v +{n+ bs+ebl =0l

82 T”‘—p::ty.
36. (b + ey — 2(b + ep)(a + D) +(a+ @A =0

LY e e 15 R
87, “‘“’_1_.,;:?’:‘5‘93-‘ 38. s+;w | b ey?
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A
W
2\
: %
O
NOTE A, " '\“‘,
\

A system of ordinary differential equations, of wehi p&rt or all is
of an order higher than the first, can be reduced to stém of equations
of the first order. \b

Take the single differential equatlon ot &E&{"i rary.org.in

by dy )— 1
f(d:t:*‘ de—l gy y& @
amd put 2y =, Py RTINS M”“ ’yn_l Then (1) ear be replaced by
dic odx? 7 dapV
the following svstom of eflua,tm-ns of the first order,
3./ =y \\
2 O
.\
'.\:s o
P \/"
'\“, (}y”_' = Hu—1r
"\{/ dr
% f(d‘i‘%l Yoy Hn—2 ** ',yljyrm):()‘
'\ \ e84

{\Ak'mn, suppose that there are two simulancons equations,

/ oo Wy By de f?“z) o,
: f]('ﬂ’ ¥ do’ dae? et & ar' d®

ﬁ( dy By Py, ﬁ, @)=0.

)
7

d ”da: dxgs &37 ' do?
On putting % —y, $¥ -, %2, these two equations can be
L 1y e Ya ™ 1y
158G
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replaced by the following equivalent system of equations of the first
order:

Pt
o = ¥u 1
dx
dn
oS W
dr ¥
. A ¢
i _ O
-z N\
N
iy day \
fi X, ¥ s Yoy = F F, — :n, 2%
“1( Yo W1o Yoo e ! ri,'.'i:) a\ 3
e iz €
2, U Yoy HE s e EELY AN
fz( v ¥ Y1 Y Tz 1 tlx)

It is evident that any system of ordinary differebtial equations can be
redaced in th(izjq manner to another equivalenf &pstem, where there will
W\.\iw rayll I'H,IL‘%OI%-JEH A
appear only defivatives of the #7:t order. \

X
N

NOFE'B.
[This Note is‘sﬂb’plementary to Art, 1.1
Tie Existence Theorem.

Following is a ¥ ofkfz Mot the existence of an integral of an equation of
the first order.® |

Suppese that the differential equation @y, y, ) = 0, where ' siands
dy . X/

for i 1:‘1013131\1 the form Y = £z, ), (1

which :i'é\;é!’wa,yﬁ possible.  This proof is limited to the case wheto (2, ¥

is fahction which can be represenicd by a power-seties 1

&«
S

ao + ok + ey + as® + dgry + asy® + - + a2+

S

win which the a's are all kuown, since f{x, ) is known, and which cot-

verges for |x|Zv, |¥|Z4, say. {The symbol [x| denotes the pumerical
-value of #.)

# Thig proof is taken from notes of & course on dilterential equations
given by Professor David Hilbert at Gittingsn.

t This is by far the most important ease, since in the higher mathe-
inaties such functions are almost exclusively dealt with, and in applied
mathematics they are universally used for approximations.
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It ia to Le shown that there is a ronvergent series

¥ = ag 4 arr + age® 4 oo £2)

which identicaily satisfies
Yo f 06 )= o+ air + ol + asa? b 0uxy 4 mgf® 5 o
+ Ay (3)

and which also satislies & given initial condition. say, that ¥ = yo “;Ike:n\
L= mp* 7\ *
That » == 1) when » = 0 may be taken for the initial condition, wishont
any loss of generality,  For, on substituting =) + xp for & and@ ™ yo for
¥in (1), it bevomes O
. o=@, y1); 2\ €3
and it is evident thai for \/

hr=a' + ar'r + agud 4 N
bo identivally satisfy (4) and the initia.\lﬁe\p&ﬁ% n' }ﬁ 1 =0when =9,
f& the same thing as for (2) to satisfy (4) au qﬁ%lhuﬁmyc@ﬂ'ﬁﬁﬂn that
¥ =i When o == 5. Hence the initial cofidition may be talen in this
form at the beginning; and for this it ds Hoth necessary and suificiest

2
that ap in (2) le zero, T\ N
It Wil now be shown N

{@) that there is one and only She series,
31‘% 1% + gk ey 1))

; - )
which satishies {#) ide ti?{a:ﬂy; and

(¥} that within ¢éréain limits for # this seres is eonvergent.

On transformiply the series in (3), which has been supposed conver-
gent. for || 24 W=t by putting = = ray, ¥ = 1y, equation (3 takes the
form R D
?'\':}Ei'x;, Gh)= aof + arn -+ a'in + a'ed + alrig + e

Theseeond member of this equation is » convergent series, and con-
verges“when uy =y, =1; and, therefore, ad’ + o' + @ + -+ oD verges.
.'fhjs shows that the absolute value of each ¢f is not larger than & certain
Urite quantity 4, say. The substitution just made for x z?.nd y does not
Nake any essential change in the problam, apd hence it might have be;n
assumed at frst that the &'s of (3) were each nof greater than 4. In
what follows the a’s are accordingly regarded as not greater than 4.

# 1% an initial condition be not made, then an infinite number of series
Vo be found which will satisfy (3).
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a3 = d@p; 2az = €1 + a0, Whenee ga ==
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If (5) satisfies (3), the value of y and ' devived {row (53, swhen sub-
stituted in (3), must make the latter an identity; and, therefore,
a1 4+ 2age + Bepi? + o0
= dp + ot + dafert 4 axx® = -y @0 + e (ead + agc® 4+ )
+ @5(a1® + aa® + )24 e
is an identical equation. Henee N o
w, Bag m g - oy "{a:ﬁ:

whenee ay = ag + — (al + fratte) b earo ) and similarly for 4 BT

evident that alt thc a's can be determined as rational igt c*ﬂml iunctlona
of the a's; and it is alzo to be noliced thatl all the i@ietieal coeffielents
in the expressions for the a’s ure positiee, and, hwttom, the o’s will
not he diminizhed if each of the «'s 15 replaced hy \L

rr%@%lﬁﬁ&m%%ﬂ‘?l&‘g]ﬂil it is eudm*ﬂnl (3 with the o’y de-
termined as ahove identieally satisfics (3\ (At has sHll to e de termined
whether this series is convergent,

On replacing each of the #'s in (d} iy A a gquantity ned less than any

ona of the a's, there results R ;‘
¥=A+e+y +,;cf’.—F @y £ et bty 4 ) (8)

The integral of this equafidn is found by replacing eacl af the g's that
oceur in the expressions<for the «'s of (i) by 4. Noue of these latter
coefficients are dimipithed by changing ench of the as o A, as pointed
out above ; hencehif & intecral of (8) ix convergent, the integral uf (3)
is also,

Now =solve E(); dlrect.lv On factoring the second member, the cquation
becomes :.\“

& ¥ = A(l +rtaF el y + gl

Noo

% s\ = ] s . ___1_
= 1 - 11—y
“\ Therefore, (1—¥dy =4 3 dr :
whenee, on infegration, ¥ — 2 = — Adlog(l — &)+ o1
Thereforé, y=1x[2dlog(l — )4+ ljé.

Here ¢ must be determined, 50 that the inital condition be gatisfied,
namely, that ¥ = 0 when = = 0; therefore

b=14++vec-- 1

Hence the square root must have the minus sign, and ¢ must be zere _' '
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Therefore,

p=1-T1+2dlogl —e) =1 -—l:l—QA(m +Zf+‘%s¢)]“ 16

PRCI.

Tho serivs o - ‘% + ‘% + -+- comnverges for [z] < 1; hence the square root

of 1..2 _lk + +jf ----- converges for fx]<71; and heneo the va,hge

of yin (7} Is fmlfo and, therefure, the value of y in (5) Is finite ,’Q)r &
withli cortuin 111n1t~, \.

Note A showed that an equation of order » can be 1ep1ace.d~h}r a 8y&-
tem of » shnnllaneons equalions of the first order, ench wntammg an
unknown fanetion to be found.  In the case of the equat.mp of order n,
the proof of the existence of integrals is made for this equivalent sys-
tern instewd of for the single equation of the ath order- the proof can
be earried through in much the same ws wy

The method of proof given abdye 1§l aq( ‘bl ang I&’OWGT Series
mathod,

Historical Note.t — Augustin Louis C,a.uch} (1789-1857) of Paris, who
was one of the leaders in insisting on Sgorous demonstrations in mathe-
matical analysiz, gave the two ﬁlst"p.rdofs of the existence theorem for
ordinary diffcrential equations, JT"hc first proof was given for real vari-
ables in 1825 in his lectures at t.he Polytechnic School in Paris; the
second was given in 1835 fofS¢oinplex variables in a lihographed menwlr.
He wus 2lso the first whqmp)i\aved the existence of integrals of a partial
dillerential equation % The first of the iwo proofs wag published in
Moimme’s Calenlus in 1844 ; thiz may be called ‘¢ the method of difference
equationg ™ it hfrs Been deve]oped and szimplified by Gilbert in France
and LipschitgNg*Germany. In his second method Cauchy employed
what he callgd* the Caleulus of limits.” Thig method hag been developed
by Briat &0d Bouguet, and Méray in France, and Weierstrass (1815-18¢7)
n G;,nkqu {The proof given above follows Weicrstrass' exposition of
Cdll(lﬂ s second proof.}) A new proof, that by ‘the ethod of sncces-
Sivl approxmmtmm " wag given by Bmile Pleard of Paris in 1860.}

\/_

*Ieo Xocnigsherger, Theorie der Differentialgleichungen (Leipug,
18897, p. a7,

T Tor many historical notes and references relating to the existence
theorem sco Mansion, Theoric der partiellen Differentialgleichungen,
Pp. 26-99. _

"1 ¥For an English translation of this proof made by Professor T. 8.
Fiske, see Builetin N. Y. Math. Soc., Vol, 1. (1881-1802), pp. 12-18.
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In the Traité d' Analyse of B. Picard, t. 1L, pp. 291-31%, will be found,
beaides the author's own proof just meniioned, Canchy’s lirst and seeond
proofs, the latter as modified by Briot and Bougnel; and Madame
Kowalevsky’s proof# of the exisicnes of integrals ol a system of partial
differential equations, (A knowledge of the theory of fnuctions of 3
complex variable is necessary for the reading of some of these proofs.)

N
2N
f NOTE C. O
[Thiz Note is supplementary to vl 8] <™
The complete solution of a differential equation ufnfjsc\uth order con-
tains n arbitrary independent constants. 4
Let yf, ¥", -.- denote the first, second, ... degivatives of y with respect
to oA Bkl By g indenote the vl ol g, ', ¢, - when
£==0, TFirst, let an cfuation of the fHug\birder be considered; und
suppose that the solation of OO
PGy, v )=, m
when expanded in ascending pm\-'mf;;u‘f @ 15
¥=rcg é;af—!— i o e €]
Note I8 ghows that the gflation can be thus cxpressec.

But y(&) = y(0)+ y&{“{h}x + éy" HZE 4 e (Maclaurin's Theorem); (3}
\Y =

1

|2y 0y,
Now ¢ ;??@)’ cammot be expressed in termns ol anything knewn of

determingbley’ Mowever, o1 = y/(0) can be determined, for £y & x)

=0 laé e for all values of x, and henee for & =0; therefore

Fi’%’& Yy(0), 03 =10, that is Fley, ¢, 1) =0. This detevmines ¢ in terms
A

and therefore e 2y (0), o= {0}, =

2N\ ~.j1'lquael,iml {11 may be selved for y', thus,

\ ™ 4)
) W =1 ) _
then, on difierentiation, ’

# (relle, Vol. 80. (Memoir dated 1574.} Madane Sophic de Kowa~
levsky (1833-1891) was professor of higher mathematics at Stockholm
{18584~18017, and received the Bordin prize of the French Acadewy
in 1888, o

+ For this Note, I am indebted to notes of lectures by Prote

SSO}'
Hilbert at Gottingen. B
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— e e e

; therefore y''(0) = gfy’(ﬂj £ 5;

ar, n ar
ay e

This detertnings es in terms of e and ey, and from this s ean be found
in fertms of e alone. Another differentiation and the substitution of
¥ =Uin the result will give an cquation by meuans of which (0, and
thus o also, can be expressed in terms of o3 and similarly for the cond
8laits ¢y o5, -+ Therefore all the constants excepl ¢ are determinedy
that is, the differential equation of the first order has one arbitrar PR Cf}n-
stant i {ts general solution.

In the next place, et an cquation of the second order be c@nﬁldored
Put the equation ¢ (%", ¥', ¥, )= 0 into the form

¥ =J e ."‘.,\\ 5
and suppose that the solution is '
y=c+ Clquwigbhpaulizb}:}fy.org.in
I)ete.l‘mination of the values of ¢, £y, e ,ﬁn beforp gives o = »(0},
ey =g (0, o0 = ~y”(0), .. Baut, from the gnen cguation,

Y0y = £y guy, 20, 035
and thiz defermines egin terms Qf’ and ¢, On differentiating (&) and
potting & = 0, there is tha,mod N

. if Gf 8f . - ) .
p = | o Sy ] = P e )= Pl e 1o 6 O3
and hence ¢, Iz fonud N\erms of ¢ and ¢,. By proceeding in this way,
th: values of all te'pthor coefficients can be obtained in terms of ¢ and
oy but it wf‘H Qot‘."be possible to ohtain any information about ¢ and

¢ The solpfipp of (5 will therefore contain two arbitrary constants.
The pl(.\f £ the theorem for equations of higher orders is made in

exuctlythesume way as has just been used in the case of equations of the

fival. {m}b second orders.

o NOLE D.

W' =
' wdl

\

[This Note is supplementary to Art. 4.]
Criterion for the Independence of Conmstants of Integration.

In Art. 4 an ezample has been given of an integral in which there are
apparently two rconstauts of integration, but in reality these iwo are
equivalent to only one.  The question thus arises, how is it to be deter -
wined whether the constanta of integration are veally independent?
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In the case of a solution of an equation of the second order hav ing the
form y = ¢(x, ¢1, eg), the eriterion that the constants ¢, ey e indepen-
dent, by which it is meant that thia sohition be not reducibie (o the form
¥ = ¥ iz, f{c1, e0)¥, in which there is really ouly one wibitrary constant

F{et1, £2), is that tho determinant

fde B¢ A ¢
| gy e )
¥ P O
ge1de degdn P
be not equal to zero, A\, 3

For, suppose that ¢(x, ¢, ) can be put in the lm@v& 1 Jen )}
Or forming and expanding the above determinant, shiere results
o ar, o ar 6” of it
ar gc1 dxdf dea ! i
&/
which s Agpticaliypany ;‘,\ -
# Conversely, if the etermma.nl he jdeitically zoro, then ¢ o 6)
must be of the form o {x, f{c1, ¢2)}; th,at.‘ls, ol(x, o7, ca) will noi vary, no
matier how ¢ and e; are varied, g Ihng us Fleq, ) 4 assigned some
particnlar constant value. .~; N

Omn writing p, q. for g—¢ Q{f—) “the condition that the determinant he.
1 I dc‘;

63

zero takes the form p 5‘4& =0, whenee o inlceraiion ‘Jj == 4§ £00-
I

slant ; that is, 4 k\\Qld‘eandent of z, and Tence can only involve ¢

and gz Take p 2 1‘;, where L, M, are functions of ¢, s Hence

a g"f’ = Lc?qk “Now differentiation of @y 01, 6z gives
1
$

dﬁg‘:\j-‘aqb dr L o¢ ey ——a—qbdc =9 5 A {Ltley -3 ’mez) lﬁﬁ
\\’ o iy ca o dei

&L
wBut Lde; + Mdes has an integrating factor g, such that wlde+ pMdcy

:'\iﬁ'a complete differential of the form drie, ¢).

\
\

" Therefore dp = gqs dx + IL g¢ - df{;, eg); hence ¢(x, 1, cx) Will not

vary, no matter how o1, ¢ are varied, provided only that they satisfy the
condition f{ey, ce)=: & constant.

Henee the necessary and sufficient condition that ¢, ¢; be really inde--
pendent in ¢{x, c1, £2) is that the above determinant be not Pqual to zero.

# This part of the proof is due to Professor MeMahon of Corpell
University.
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Move generally, the eriterion that the » parameters . es, -, ¢, in
TLr, ey fa, e, ) he dndependent s that the determinant

af ar i
‘ 3" a":2 t}"-'n [
l O & FF .
oeide deade Geade ‘ o &

. P : N3
o\

 §
Ny

N A

i i o
I G, dan-l Gt fn—1 # xf"

. a \ 3

he not equal to zero.  This follows from the theorem prnv;:ﬂ,\iﬂ Note F.

X 3
\ ¥4

NOTE H.
p \l
[This Note is mpp!mmmthhym@ralrgr Prg.in

* Proof that Pde + iy is an exact dlfferpntlal when 92 - 9%,
gy

ar
Tt j Pds =V, then 85 '5” 1' Sev _op_ 99,
dedy Oy ox’
therefore : “7(2“ =4 (6_1’ ) .
A8z dx\ gy
Hence Q= —|— & @éyﬁvhere @' {y) is some fonction of . Therefore
P@ Qay = %Vd..:+ %Vd_; + ¢ (y)dy
o ‘ / =4[V + ¢(y}], an exact differential,
::\”' :
& S\
&%" NOTL F.
;{f‘w [This Kote is supplementary to Art. 48.]

N\ E
’ On the criterion that # integrals #1, yg, -+ ¥ of the linear differential

equation

4

gy -1y .
=0 1
Zon Pldﬂ T+ e+ Pay &)

be linearly independent.

# T am indebted for this proof to Professor MeMahon, of Cornell.

y
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Before proceading Lo establish the ceriteriiag, it may he comnarked thag
if there be a lioear relation _
ayy + oazpp + - =0, (Z
where gy, aa, «+ are conslants, exisling between all or any of (he iutegrals
Y1, B, vy Wy Lhen the Integral y = oy + eape -+ o= < o'y, I virlue of
(23, way be written
N ¢
. LA
da e @ ¢\
= (C‘z - Cl—‘)yu -+ (*‘-‘3 - Cl—A)ys + - +(f'aa - j)y,,. NS
[:} [} R

1 1 ®1 N\

%3
This expression does not really contain meore than i — L akbifyary eon
stants, and therefore is not the geveral integral, &
Forn the determinant )\

¥ #a e }\\;
[ o RVETIREDK ¢
www. dbraulibra g!org,jgfr i .\ ¢

A

s

yl{n—l) y::(?i-—lj e ﬂj{»-ixlj
where the elements of each row hela® fhe fivst are the dorivatives of the
corresponding elements in the yqﬁv’;above them,  This detertninaat is
known as the functional dctcrﬂ;t’riaﬁt af ¢, #ay ey Huy and will be denoted
by B. The necessary and,gufficient condition for the lincar hulepen-
denee of g1, 2, -, ¥a I8 tHARD be not cqual to zevo.

Suppose that this em ilii‘i}i()ll Lolds in the casc of # — 1 fubctions, then
it holds for » fullct.if\s\. )

If there be a pélation such as (2) between the functions j, i o Yo
then the cleqdnts “of one of the coluinns of B ake formed from several
other colulpnﬁ 'hy"adding the same multiples of the eorresponding elements
of these Ot]i.l}t‘"coh'lmlls ; and, consequently, 2 will be identically equal to
zero. \\J

CObwersely, if R =0, there will be a lincar relation of the form (2)
h@’f»;-?een the functions #, g, «, #o. Since B =0, the doterminant must

. :’:Ege'radl‘.cibl(‘ to a form wherein all the elements of one cobunn ale 2er0;
3 that is, there musi be certain multiplicrs Ay, Ng, -+, A, such that
At ok Azt 4 o 4 A =0 1

M+ deye’ + o 4 A =0 L

R )

Mt £ Ay b o gD = 0

Differentiation of each of these equations and subtraction of the oné
next following gives
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My S0y e Mg =0
M 4 Ml e bR :'?fn! =0 N )

Mol gt L 4 \n 3 = 0

If one of the determinants !y, Uz TR . | vanishes, szay the’
n' - ;Un" A
v % O\
P2 i gy ae) | :‘ “\

oune fortned by omitting the »i column, then by protht@ls ‘ther(' is
a relation
e+ eap + o + Gt + el b e £ um\to
But if no one of these determinants vanishes, then if fnLlov‘m from (4}
and the first (n — 1) equations in {3) that
\p/ww dbrauht{\c{r‘y .org.in
M .
A Az ) 9\,} w‘

Suppose that each of these i ‘whons,m equa.l to g, say. It fallows from
fimegration that 3 = alpfmx, re = %GFpa; N S L By Qay e, g
being the constants of mtogmhgr:“ On substituling these values in ilte
lirgt of equations (3) and clivfdiil'g by the eommon factor el there

appears tire relation
ippeats the relal alyl\ aglfz + oo+ iy =0,

which is thus a congedience of R being equal te zern. Hence,. if the
eriterion holds fow 'llx funelions, it bolds also {or 5. But it can be
zliywn as in Nogel p that the eriterion holds for 2 functions; henee it
helds Ior 3, hmfgo"for 4, and so on for any nomber,

'lllelefm N necessary and sufficient condition that wy, ¥a, -y ¥a
form o sy«tém of linearly independent integrals, or a ﬁmdamenml systen
af intgnde, as it is sometimes called, is that the determinant £ do not
vagigh identically, -

O NOTE G.
4
The relations between the coefficients of a linear differential equation
and ifs integrals.

Leét 37, ¥z, ++», ¥ be 1 lincarly indepandent functions of 2. Tt is required
to form the differential equation which has these fanctions for its inte-
grals; in otler words, to form the equation which has

¥ =1 + Ozl o+ o Gl (1}
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J— B R —

for its general solntion. The differential equation iz formed by elimte :
nating oy, &, +-+, 0o fr0M the given integral by the method shown in At 3,
By differcntiating = {imes there is obtained the set of % 3 1 equations,

¥ =ogn ek et ke
¥ =y’ e’ o+ G ¢
it = ey b oeapel 4 e 4 g O\
From this the eliminant of the «'s is fonnd to be e \
W
yom ¥ ot ‘ A\
o' oy eewd A\ 3
vouow el s )@
‘ yin) y.l(u) Lf'_'('“} "‘yn(ﬁ) ‘ N '»“\

the differential equation required.
Now suppose that the dificrential mluﬂmono{%wmr_{ the imtegrals

2 i SRR By org.in S\
dry (I““‘li,f & HANN, P - g
Fs ——--,, W+ I,. Y. = 42 ) .
i, B ! gt J’.c" I N\ ( { _
On denoting the minors of y, y/, & {ﬂ'lJ in (2) by 1, I, «oe, Vo EEPEC- -
tively, (2) on cxpansion becomea N\

Ve Y o d" 1J TR 4

v, 8y, +{(— 1Ty =0 @ -
dzn »\ L a1

Comparison of {3} am’d}é) shows that
PIT\?;’:_—l Pp=Tr2 L p (1 d.

) Lo n il

It will be o‘bﬂeqed that ¥, is the determinant B of Note F. *#In pariic-

ular, sines. difforentiation will ghow that ¥, (‘ }” == L dY”
\ df‘: Yn dﬁ:
and LQ} Y, = e~ max,
~. NOTE H.
\ 3
\ ~ [This Note is supplementary o Art, 102.]

On the criterion of integrability of Pdx < Qdy 4 Rdz =0
Tt has been shown in Art. 102 that the nrecessgry condition for the
existence of an intepral of

P + Qdy + Rdz =0 M

-

# This deduetion is dus to Joseph Llouvﬂle (1809—12382), professor ab |
the Collége de France, 3
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is that the coefficients P, Q, R, satisf}’ the relation

(89 _ORN, /0B 9P\, /0P :
‘T(aa— it e~ 5,,)”(33, ) 0 @

1t will now be proved that this condition is also suffiefent, by showing
that an integral of (1) can be found when relation (2) holds.

Substitation shows that, if relation (2) holds for the coefficients af ,
{13, a similar relation holds for the coeflicients of £ \>

. ‘ :"\
pddic 4- p@dy + phdz =0, W (3
where g 15 any funetion of z, y, 2. If Pdx+ ¢Qdy is not an exa.cﬁ difier-
entinl wilh respect to @ and y, an integrating faclor g can be\fﬁund jor i,

anid (3} ean then be taken as the equation to be wnsuler"‘d Ilenee there
is na logs of generality in regarding Pdy 4+ ¢y as an exatt differential.

On wssoning then that
) s wgtbrauhbwak\y'org in

dy (?$ ‘.‘x\
and that V= j(Pd'c' + Qd!?)',
it follows 1hat =9¥. ”‘;Q av,
éﬂ ay

daP. GQV 8g _ FV.
az\*azax s oy
Heance, from {2),
GV(& 9) 4 al"(a&_@’-:z)
duNozdy 0 oy \dx  d=dx
A\
Thi= ma.y{)(z Jwritten

AR AT i

DTN

0.

o |97, 227 )
) lov 3rar. o=
& &57)

‘This equation shows that a relation mdependent of x and y exisis

hotiween av
Pand Y — R
. 0%
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av

Therefore, £ . — R can be expressed as a function of = and 7 alone,
2
Suppose that av _p_ 6z V. )
oz
: _4ar al’ av L ! v
Singe Pde+ Ody + Rdz=""dde +“—dy -+~ dev -y - _)dz
ey g o gs -\ gz )
equation (1) may be written, on taking account of (), A
2
AV — @z, Vyde =0, o\

\/
This is an equation In two variables,  Its integration will lead to an
- y 3 e {
equation of the form PV, =1

+*0
Hence (2)% iz both the necossary and suflicient concii('f-"e;\][ that {1} have
an integral. y
N
. {2
www.dbraulibrary.opgNrOTT 1. '\
Modern Theories of Differential Equatiofis) Invariants of Differential
Equatiens.
The two modern theories of diffefrhtial couations are
{a) The theory based upotnihe theory of funetions of a complex
variable ; "4
{#) The theory based:m}}u Tig’s theory of translormation groups.
The study of diﬁéf{\t‘l}i"l aquations, notil alwl forty years agn, wis
restricted (o the @grivation of rules and methods for obtaining solu-
tioms of the qumt;iﬁn and expressing these solntions in Lorms ol known
functions. T¥en”at the beginning of the present contury,i however

R .:.t\“' PR SR, _ - — ==

* (] :@}Ee this eriterion is included in the criterion for the general
cusedoRp variabics, the deduction and proof of which is to he fonnd i
Eijréyth, Theory of Differential Equations, Part T, pp.4-120 (Bee foot-

\:“ﬂ}lt’e, p. 1380 See Berret, Calowd Tutégral (edilion 18587, Arta TRo-T86.
Y7 1 Two histerical articles that the student would do well to consuli are:
T, Craig, ** Some of the developments in the theory of orlinaty ditfer-
ential eouations between 1878 and 1803, Bullatin of V. 1T Moth. Soc.
Vol. 1L (1892-1893), pp. 119-134; . E. Sniith, © fHislory of Modem
Mathematies " (Merriman and Woodsward, Figher Mathenurtics Chap.
X1y, Art. 11, Also see F. Cujord, THstory of Meatheuweics, D- 34]_34.7'

¢ Gauss in 1790 showed that tle differculial equuiion jmects jir:
limitations very soon, unless complex numbers are introduced.”’
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mathematiclans saw that any marked advance in this direction was im-
lnasilile without the ald of new conceplions and new methods,  DBat i
was ool unbil a cornparatively tecent date, that wider regioms were dis-
covered and hezan to be explored,

A new era began with the foundation of what is now called fonetion,
theory by Canchy, Rismann, and Weierstrase,  The study and classifica-
tion of fnnetions according fo their essential properties, as distinguigl@}'l\
fromr the accidents of their analyteal forms, soon led to a cumglete
revolution in the theory of differential equations. it became, evident
that the real guestion raised by a differential equadow is notWhether a
solution, assinned to exist, cun be expressed by means off@hdwn func-
tiones, or integrals of known functions, but in ihe ﬁl‘sn.pi}mc whetlier a
given differential couation does really suffice for the dalnition of a func-
tion of the independent varfable (or variables), and, ¥ 80, what are the
characterisife propertios of the (stiandbraulé Ay drgvilings in the
history of mathemarics are more T@[llﬂ,l'kﬁ,bl?"ﬁ)‘éhﬁ the developments to
which this change of view has given rise. " MAN ’

The leading events in the early histery™of this new theory are; the
publication of the mewmoir on e propr_-};tics of functions deiined by dif-
furential equations, by Briet a-1'1d~:f$:t:1‘r11{11let in the Journel de PErole
Polytevhnigue [Cahier 300 in iS{)Fi;'.tlie paper on the differential equation
which satisfies the Guaussinneseries, by Riemann at Gottingen in 1857
and, perhaps, most impmj;&ft of xl1, the appearance of the memoirs of
Fucls on the theory, of Yuear differential eqnations with variable coefi-
gients, In Crelle's me\}:.l (Vols. 66, G8) in 1806 and 1868. 1

The ouly work fm, English which enploys the funetiom-theory method
in disunssing diffptential equations is that of Professor Craig.

A knowlcd;fe of the theory of substitutions, as well ag of function-
tieory, i}iu{'qq ired for reading some of the modern articles on differential -

eyiatidas, )
&

{"V*'8ee G. B. Mathews, a review in Nasure, Vol. LIT. (1895), p. 513.
31 Albert Brint (1817-1882); Jean Clande Bouguet (1519-1885); Georg
Triedrich Bernbard Riemann (1826-18G6), the founder of a general
theory of functions of a complex variable, and the jnventor of the sur-
faces, known ag ‘¢ Riemann's swefaces '’; Lazaras Fuchs (born 1835),
professor at Berlin,

i T. Craig, freatise on Lineur Differenticl Equations (Vol. L, published
in 1880). See Note J for the names of other works on the rmodern

theories.
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Professor Lie* of Leipzig has discoverwd, and since 1873 has developed,
the theory of transformation groups. This theory bears a close analogy
- to Galeis' theory of substitution gronps whieh play so large a part in the
treatment of algebraic equations. By means of Lie’s theory it can bs
at onee diseovered whether or not a differential enuation can be solved by
guadratures,t  An elementary work by Professor o AL Page on differ-
cntial eguations trested from the standpoint of Lic’s theory las bgen
published. § L™
The theory of iruvariunis of linear differential cquations is oglé\u? the
later developments in the study of differential coaations. \\'"ililé{it. plays
a very important part in both of the modern theories veferded 6 above,
Fot, to some extent, it can be studied without o kuu,\\'@.&lgn of these
theories.§ It Las been Tound that differential equdsidgs, like algebraic
equations, have inyariants,  An invariant of a lineg\dilerential equation
is a Im\l.\g!{:__i,tw‘ 8{) I‘i,tsurj?ﬁgic}el}gsi_g{lllld t.hz=:ir deriva.'tii;n\:g. ’s:u'e‘h that, when t.he
dependent Variable um?ef}{goes any linear tsihgtormation, and the jn-
dependent variable any transformation whatseaver, this finction is nqual
to the same funetion of the coefficients af e new cqnation mutipled by
a certain power of the derivative 0f~fl§e’ new independent variable with
respect 1o the old. o238
The introdoction of invariaru.‘:sfmfo thio study of dillerential equations
iz due t [. Laguerre of Pazxis.| Those who have made the most m-
— o O -
* Sophus Lie was bopi il Norway and educated in Cheistiania. He bas
been Professor of Geéduetry at Leipziz sinco 1886, e has expornded
kis theory in the folowing works : Theoris der Transfurarationgruppen
Vols. L, IL, IIJ«HS"SS—ISQ?;) ;s Vorlesungen itber continuicrlichs Gruppen
(1893). Segwp. 207 for his work on Differendial Equations, )
T For,ahlglementary Introduction to Lie's theory of transformation
group\?y\'a.u‘d its application to differential equations, see artieles by
J. M\:\P'(Lge: “ Transformation Groups," dpnals of Mafhematics, Vol
}’.I[Io., No. 4 (18243, pp. 117-133; * Transformation groups apylied fo
\ Zg}dina,ry diflerential equations,” dnnals of Mathematics, Vol, JTX, Fo. 3
3 (1895), pp. 5969, Also see J. M. Brooks, © Lic's Continnous Groups,”
a review in Bull. Amer. Math, Soc,, 24 Series, Vol. L., p. 241,
1 By The Macwmillan Co,
§ See Craig, Linear Differentiul Byuations, pp. 19-22, 463-471; and
the memoir of Forsyth refcrred to below, ;
§ In his wemoirs: “On lnear differeniial equations of the thirfi
order,” Comptles Rendus, Vol. 88 (18784, pp. 116-119; ** Un some invarl-
ants of linear differential equations,” Ihid., pp. 224-227,

ay
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portant iuvestiga.tious un these invariants are Halphen apd Professor
Forsyth. Their soemolrs* are among vhe principal sources of infor-
wmation on the subjeet.

#(:. H. Halphen (1?44 1888) of the Iolytechnic School in Pails
HoMémoire sar la réduction des équaiions différentielles lineaires aux
lormes htégrables,’” Hémoires des Savants Etrangers, Vol, 28 (1884{\
pp- 1-30L Chap, TIT., pp. 114-176, in thiz memoir treats of invari

AR, Forsyth, ¢ Invaviants, Covariants, and Quotient- I}orlva.twgs\n
vinded with linear differential equations,” Phil. Trans, Loy, Soc&"%l 1?'}]
r1888), A, pp. BTT-489.
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NOTE J.
[This Note is supplementary 1o Art. 55.]
The Symbol D.

Let D be a gymbol which represents dilferentiation, with respect jo
& say, on the Mnetion immediately following it.  In other words, let ‘\“\
N\S ¢

Du=L (), or Du=I". ™
i ax 7%
8 )
an a2 (D
=t T, 2%¢ 2
Then D) = dc(ﬂ) R @
\ ¥4
B{D(nny—i i ()
oo ;]"23 \
www.dbraulibrary.or 0

1t is evident from delinition ) and the 1‘3\1“\‘! 123, (33, that the resnlt
of the operation symbolized by 7 takeny n wimes in succession will be

dtig 1 ~
)Q }
d:ﬂ” X \ad
Also, let the operations wlhich Qrmsrst of tho operation T repeated two,
three, -+, # timez in suecession be‘dpunfod Wy D% 0F, . D I shonld

r!
e nnted th'\t, according g iis deﬁnitmn D represents E{:‘. and not
£

(jﬁ) . From this deﬁl}g”i’\l of D it follows Lhat the operational symboi
iy

D iz suliject to the f\m amential s of aloebra. For,

Ty e die Ay
(.D" }—)” n = f R L ¢ 7L LT T
{ ) der ' dxr dev T drr =(

AT D pry = E (B i ﬂ(d'lt‘J — 19 Dru;
’\‘./ @\ elzn et gl et
~:\ . . T Dy = Do g
:"\\; dmy | e
“\./ Drfw+u)=."— Sy = — = Dmy = D
\; 7 ¢ ) lx’“( ) din - dgem

Sittee I represents an operstion, B can only appear with infegear
exponents.  Negallve exponents will now he considered.

Suppose that Pu=n, (4)
and let 4 be indicated by = P-ln, (5}

It i3 necessary to give a meaning to D-1L and this meaning st 1105(
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MISCELLA

N EOS

P ————

th opeyading o each e ber

he inconsiztent with the definivion of 2
i 75 with B,

=0 B
whenece by (43}, DRt

Therefore H—1 represents such an pperarion on any function that, if, ¢
the operation reproscnted by 53 be wahsequently Pifl‘fﬂl'l“_fz‘_']"i.he tu‘nctu'n’! \
i3 left wnaltered, Lence the operation Tesented by D7 s ecquivaleliby
o an integration. T follows ihat the vperation indicated by B=eNid

H H +3 1 o 1 A& " N

equivalent to # snceessive integrelons. Ihe proof that '-llF ,h%.{nltjuT 1
with negative exponents is subject to the Taws of algebra, jssimilar to

that used for I wilh positive exponcilbs ,\ 'é4
It has been seen that D - D-lp=1n v’
But b1 pe=t+06 w\,/

$
W wd 'qul{sb;‘ Faly org.in
in which ¢ is an arbiwary constant E}I'f 111]?@;'1:“1 . ){I‘ﬁEﬁ’fﬂl'e, in order
that

W

fm . Denp= e ':va-;

TR
. . . Ay 3, K
it 15 necessary to owit the arbitary, wrktant that arises when the opera-
tion indicated by D™ iy pr-t'r‘ul‘n@ﬂ.\'
NS

3

S YorE K :
s\ J
E’i"hia\ﬁ{éfe i3 supplementary (0" Art, 82,7

L) Integration in series.

The law fobihe exponents will he apparent on subgtitnting am for g

in 1he figs;tl%é;nbcr of the given equation.  Subpose that the expressiou
0‘.l)tai}§*t1)y this substiintion iz .
*\

QN Filmdge 4 fe(m)em, %)

N ~”
:"\'."In general (3) will contain mere than two terms ; In the case of the
N emations in Art, 66 it contalng only one . ITnder the supposition
just niade, the snceessive differcnces of the eXponents of x in the series
songht mrust evidendly be m¥ — m!  This tommou differcnce will be
denoted by 5. Solution (2) may now be written

oy = A + Ayerm+s + o + A qpmtils 4 4 gmer +ou, (4)

or simply ¥ :EA,&:"“*".
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DIFFERENTIAL EQUATIONS,

Substitution of this series for y in (1) will give, In virtue of (3),

+ Al g)amte + Ay fo{m + )t

-+
+

o .-

Apfi(m} 2% 4 Ayfa (1) pw+s

Avafi [ -k — 1y s]wn+ i
Arafafm + (?‘ — 13 sj s

A (e va) pmbre

Apfalan - reyp il

=, 10)

+*{
AN

Since equation (5) must be an ideutity, the coefelatng/of cach power
of « therein must be cqual o zero ; hence

www.dbraulibrary.orgii ngm) - o~
Afilm + ey + deafa[m —,‘-(%u—i 18] = 0 (1)

The ootz of (6) give the initial exponents of serivs that will satisfy

and

<N

{1y; and equation (7} shows that (N ™

which i3 the relation bet\\een successive eocfficients,

N

i[&'n»—i—-(r—l).s] A,

..f f1 (m + r4)

¥
W/

(6}

The dilfercnee

between the exponentstin® (1) mighs have Leen taken, ! — m" or — 83
in this case, the rgguliing series would have had their powers v reverse
order to those ofN4Y; and the initial terins would leve been found by
solving fo(m )0/

Tn de:te;miwi'ﬁg the initial power of x for an equation of the wih order,
that coeflicient in (3) which is of the nth degree in = nust be pul eynal

T nem

since thers must be n independent serics in the guneral solution.

(f_hoth' /1(m) and fa(m) are of the nth degree, two sets of series can be
mﬁed one In ascending powers and the other in desecending powers ol z

“\\./ If the expression {3) have another term Jalme )z,

\ N/

the tering of the

\ / series can be sucecssively deduced, but the process will be wuch oore

tedions.
equations,

This method can also be employved in the ease of non-lineat
but more than a very fow terms can be caleulated only with

diffienlty. The equations previously considered can of course be intes

grated in series; Ex. 3, Art. 82, illustrates this.
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ANSWERS TO THE EXAMPLES.

CHAPTER T. O\
.~§\ “
(p stands for ¥. ) A\ by
s 53 &”«’
72
Art. 3. QV

2. (oF - 2yh)p? — dpry ~ 2 =OWW. cﬂpreylag@
@ d
4, o‘y&y—y ( ?") é}-

dE AN dm
PN
Page 11
“s:“'
ax day QD &y, 4
L ——= . T 8. ¥ g 0¥ __ =0.
VI—zt Vi—gg 3:&“ de+ dx =0
2. pvl =y, /"\ ‘ 9. d +1132y._0
3. @:?@—61}({\.\ 10 f‘Z'y a2y
2t ar 7 - -f—( ) =0
4. 12p%y=(Bpd 2T 1. 4= 29’6? + %
b

5oy =@yt 12. $,

8. Sr);pé‘s??'?if s ”w(d"”) _ i

7\92} -m2)+1—0 aF " \dx

K4 & u. Y
| ‘{:; 14 3155—1- 2y -_21:(E'
i {.\w ks
Yy
/ CHAPTER IL
Art. 8.
29Vl —xt 4 vl — 4 = 8 w=clo+2)(1—ap)
= 4, tany = ofl - 7).

P 21
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Art. 9. 'i,
! "
2, oyt = ci(x + 2¥). 3 y=cdr
s (V34 1m 2y ot
o2y By — '32"3_—_(_____-. T ev,
4 o290+ 22y — ) G — Vo 2y . ;
Arxt, 10,

O\

7N ™
31 -

gy (b+ vV2ihe+2(2 Mhl)‘
9. c(p—5omyrtilatdy—17)= {22; Eo_wl}x;(z &z«)‘

."\&V

1. (y~m+1)‘3(3;+a:—1)6 =&

Art. 33, \
¥ DN =
3. 2w — G —apt—ay = £, ms‘e’mjk Sty =
W 5w gablaullgl"}af_ +y —J‘(’)’ ‘1"\& ot
Art, 16.¢
a (!"‘d_
3. 2alogx t alogy —¥ == 4 gﬁ'e.,—i_—my—:c:f?. 5. oo
*g.zt 17
’ 1
T roa? = . _ L
1. ia’ @?{s\ 3. 2logx —logy = my+c
O
\’\ Ast. 18
X . Ay L= 1
1. ex(x? + y'l)::\ > 2, 52—yt = 3. A ot = o
\Y L, L 2%
,\T, 4. :-:y—}—yl—l-?::c.
\{\w ' 19

N Axt. . e

PREETIETRPPIe o LT 5, 6vay — s hi=e
:O'\.’% . .
\W ' Art. 20.

Y g y=(r+oes 8 y=tanz 1o ® 4 y=(er+ )+

5 3al4 Dy=4rt+e

Art. 21.

3 )
| g - 4 = c(l -

1 _ 3 xﬁ)i‘-—l-:'—-x—-'
3. Ty 3 =oxs — 2% 3
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ANS IVJ_*,RS
Page 29
L e YL te 4 tanxta.n-y:—.k,
’ . x ytx
2. 2t =Zey 4k 5 ]ugi—"r.@ ==
3. y::?q(mx—— t
2 oe* 6. =21+ ce=).
. e\
T 60y (e +1)2=102f 4 8425 + 155 + c. o\
8 xg—xy+y3+m—;&c R ,}
i‘n&
B.y—ce \/1 R R .\ ‘
\/1 —a;?
= AL
10. e =ev ' \
1L o — gt + 2287 —Weﬁzdbmﬂ‘y org in
12 yiw? f 1 =tan-te + e 5
’ " 16, ~log'c/x3 FE—m tan—ly . 1
13. Ingey= i's %
. e IS L
4. v = or + exv'1 ZWR N .,
1——J-—1—c,r ,};’x“ 18, c+yd=e
4 ntl {n—1} &inx 2 i
19. y- xg(‘e + 2 gju +ﬂ__1
20. (&} Der= zx,.+<x, 23, y+ 24 +_gﬁ’3_‘§x2y9: ‘.
1 i . .
21 E u? o 1:‘:fe’t 24, yi+2attat—2att 22 =0
fiapnTE '.yf&,/z 1 2 1yt
29 T LA 85, —=2— gyt e,
> AT 2'\“:?T % iy

3.

219

'\V 26, 4% = au? + 2.

\\ 21. (m—i-\faﬁ-f-sr-)y_a*lag(m—]-\e’a?—j—:c')—f-c

- log :r“’+y'3+tan—1g:c‘
20, (4324 1)y =2a(sine+2 b eos x) -+ ce— R,
30, 2% by = ey

Syt vt R
33. 910%33}-%22:-}-_%3):I4(3y—§zl+a).

34, 22y — 2aylogey=1.
&
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—— e —

35, daty=54 m?ry:‘f-. 81, oy = qix A e
v 38, Trogt ¥ L, _ .
36. ey = ex zﬁgﬁ_‘;_haﬂl—y ¢
CHAPTER TIT.
_ Art, 22, ’r
Boy=c atymcoayteiiyize B ai2pten u +'§§\r'
©oa, S43(y + £)% = 27 ™. 6 y=4r4¢ ,—6 Le
G
Art, 24, 0
a gy~1 . { .
2. x4e==x 5 flog {1+ M 7% (p—1) —tan~ip}, w1thﬁ\é@ven relation.
3. log(p - xz)=—"— ¢, with the given relmt}oa
W W, dbrauzflﬁrary org.in \V
4 2?] = ¢x? + s v
) Art, 25 W
Loy=c—[p+2p+2leglp v~1‘)‘], w=e—[2p+2lg(p— D]

‘2, y—c—fﬂlﬁg(p-l), At«:Jralow—m.i
p—
8. ¥ =2cxt el .'\

:‘\ Art. 26,

1. :r_logpﬁ—}—(ﬁ\\kr'

2. —e’.:y’@\"}m-—tan*lml

3 2y -k{: a[p\/l -I—j? 100(p+\/1_:;-:1§9)], =gVl + B2
BT alog (4 VITF), 1= V1 TP,
N
rf,\ Art. 27.
o T
N4 1oog® ooyl 28 L . 2. ¥ =2cx 4 o2
v 4
Art. 28. \//
8. y=ex+sinle 4 el = pe?r ¢l 5 ¢¥=cxt+ 140
Page 38.

a -,
1. sin- lz log ¢z, 2 y:c(;r,-b)-#c
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5. (1:'2.-_")'2-1—(‘)(.7"1—_; +m:") 0. & (g—~Bxtci(y—3z+e)=0.

4. xy = ¢+ cZn 6. ac? 4+ c(26—B)—y2 =0,
F(r2)dr ¥
A= AT i —tan-1¥ 2 . gt
.84 Lm where # — tan ot and 72 = g2 o3,
8 lan- ¥ -F ¢ = vers~12 ¢ vzt Lys, A
5 A\
in—l7T el _— ~"\\ "
8. sin lx + sin 1$_ . O
10, 52+ 2 - der+8c2=0. (Puta?-3yi=e%) N
1, 22+ P2+ 2e(xd )+ e2=0. “'\"\."
e Laafi 14, 5t _ o L) _ 0.
12 g+ f ot = " v i‘i+1
By b=Erot 3 dflafBEmforg.in
o sin—1% — cos1T )‘( ™ )
16. (y sin P el g - cos p p ?j'} xZ—c 13 a
7. (g4 e)+(x~a)=1 1,9 (v~ ca®) (@2 + B — )= 0.
18. y = Zevz + ). “20 y=efn — o)k

™

21, (x?— 3y+c)(e? + t'y)(mr+ ey + 13=10.
22 arteo=§pt— \+ m? log {p + m), with the given relat.mn.

2. e = cem £ R \\" C% (a4 (¥ -0t=1
2. log —ety. 28. g =%+
%+ \/_f“%}i : ¢
27 yPP=cxf et
x:\“'
5"\.“
A\ CHAPTER IV.
A\ Art. 33,
&N .
B v=cz o a+dy=0 - 4. 2yt —4eH)=0.
s (4 x—e¥=day, yg=0 5 (z—y+c)¥=alz+p)? s+y=0. .
Fage 49.

1. 2y::c-:r,2+:_‘1 o = axd

2 abr 4 exy + ¢ = 0, singular solution is z(xy?-4eH)=0. z= &
is also a tac-locns.

§ (y—ecxy=m?4dd, L mit = mi
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§, y—ecx—~cd x2=dy

6. P=dale—-0); 1+4x%y =10, x:=0lsataclocus; y(27 y— 4071 ()
¥t = d .

7. (v + ) =#%; x=10is a cusp locus ; there iz no singular solncion,

8 (y+ey=={x—1)(x—2); singalar solutions are ©.=10, ==1,
g=2;z=1 ;LJE; are tac-loel.  The curve when e =0 ccﬁfkiﬁk

E e\
of an oval culting the axls of » at tho orfgin and at . = Wand a
curve resembling a parabola in shape, having Jts ue?t%x at the
point for whichk & = 2.

9. »ix® — oy + )l = 5 singalar solution is 4 p% ANET >” O;w=>01s8
a part of the general solution, and is the cgsy I8cus for one part
of the general solution and the eny elnpe la({&b,fm tho other part,

10, y =y dFEeyliframporgdn — \ ¢
I, 2Ly ey 1 Le2=0; that I% 15::’ + . Eo=1 Singu.
. v l—s
Iar solulion iz o — 2% —1-»?;* - 4 -4+ 4 =0; that is,
(=+y+ V2= +¥ —~v’°)@;~ Sy V(2 — g _\ﬁu 0, The
general selution iz the sygfrm of conics {puehing thess four lmes
"\(‘IIAPT Y,
¢ o\
$ \‘ / Art. 43,

3. Vay=z + 0. 4 y4+e=var— 22+ {f vera— :(:

B, ¥oe e — x,eos,‘& when ¢ = &, the cardioid » = K(I — cus #.

6. o= e'\ d

Art. 47,
L3 4 4
3. \'1% cliipses 247 4 2 = 2 4y — ¥ =%
ﬁ.""[‘he confocal and coaxal parabolas # :“_3_1_—
N 1—cose
N\ % 1 ¥
6. secH@ L tandg=rce”. T, r=cehetd y =yl L yf 6= tan"li'
Art. 48.
2 s= Ja £ vt + . 3. s= gt
Page 60.
L oy = cexs, 9. xf 4 y'f = af, 3 St = 2+ o)

ANSWERS.

4. %= cx VB F ok, B + a?y = a?H.
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®mosom =

11.

12.
14.
14.

17,
18, x¥c

19.
20.

21.
24,
27.

23.

v = ¢c(1 —cosé). L

§ = xsin ¢, the intrinsic equation of a cyeloid referred to ita vertex,
the radius of the generating cirele being } «.

The lines rsin (6 4 a)= i, and their envelope the citcle » = ;

The puralle] lines (msina — neosa)r —(moosa + neina)y = 6.

42 y“ =

The system of circles passing through the given point and hawmg’

their centres in the given line. - N\
N/

W4 R =24?logz + ¢ 10. #2 — jc?‘
rt = gt sin wf; v? = o?sin 2 8, a series of lcmmsca.tes havmg theu- axis
at. an angle of 45° to that of the given system. _ .8
7t — «2 = ¢rcosec 8. 18, B e e0n
Parahal — )t —-2
arabola (y — ) oy + x&f&a Ebraﬂl\brary org.in
2yt =gk 16. xz—N;—z

o ¥ Cra
log %5 + Vi — )= 50 + VERH).

= ny
= gsinaf; ¢ =csind; w3 (1 —cos ).
. Visd,

22 re * =e

)\/x s V’y —t»\(x‘

=~V 28, 5= _@ — &)

r o= a1 -] cubg). 1 —esin (¢4 -‘.:)

The invu}{’fes" of the conics which have these points for foci.
The GCQJJSS that have the fixed points for foel.

29. T}i"\érhpse a -+ a2t = o3 30, The hyperbola 2ay = o*.

814

33.

3.

¢ parabola a%® = «*(2 ay + «2).
(Bee Johnson, Diff. Eg., Art. T&3

fay +e= 2aa~,\/-1.a,2xﬂ 1 - log (2ax + vViaisE - 1),

e
(o) i=oce +t E _fe"‘ Syde.

il
-

R —
(B a‘:ce""r. fi=Iwhent=0i=1F". .

z ._Ef, _ T
() a_oe"‘ +§ Ifa':(]whena:ﬂ,a_ff(l e & )
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_E

R T Lt
’ff_i_ Ey

R+ L

R
(dy i= e Py (B sin wt — Luw cos wi),

() T=te {Rsinat — Lo cos wt)

FJ‘”?;Z gLR sin {bwt + #) — Lbw cos (bt + £ \

far

_x , .:\\\‘
[T . “ o

. (@) 1= {ep a4+ ok | @)

+R"~r

-t -t {
(B) i =¢e B, (¢) i =rce R “\\

3
. “Re
(d) i=re & _f_W(GOme-I—RCWSIDn\\
.\},

86. (a)wcfﬁj'adm Ry OB 7 \<,

“,'

(Y a=Qe M, where @ is the cl@rge“é,t time £ = 0.
(e} g=CE+ ¢ee R". A'i"a
i I\
(dy g=rce 54 %‘&;in wt — B Cw cos wi).
i)

3. 5= -_—_—-"@wf +_._.,_,1'_ 1:’}\
g ’\Q\
x)
O CIIATTER VI
"
?\J Art. 50.
N N A
3. x\’})eimt cqe Y, 4. &= 0yei% o pge”
\\
Art, 51.
”\l“ ¥ = e®(e; + cpi} + cae—>. 2. = ety + egic + canZ) + Gae®
/) Art. 52,

8. ¥ =01 + cxx)sin T + e*{cy <+ L) COS X
Art. 58.
2 ¥ =1t + cog 2 = Hum 3. ;;F—e‘f(r‘z—}-(‘ﬁ)-l-d e,

4y = (e b ooar) L oge B jj.p— {e“X(rIx)*
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Art. 60.

:-A 3. y= e‘ix(cl cos?z + @siﬂ?g)-‘r ey + 3u) 4 Lt — 1.

4 y=e(ax + b)+ tait $
. ’ - t\ $
Art. 61 & )
O
8. ¥y = 10~ 4 e¥(eacos V32 + ¢gsin V3x) 4 Lzt — w-j—,})\ "/
Art, 62. " i}
.\
3. y:cle%-{ur};e-‘—'ﬂ-—-‘sﬂ,shl%x. \}
4, ,.r—('e‘*-f—e—(cl V3 ‘fgx \\>
2 rza {brary.org.in
+51n3.¢+27005\§x P % cc% &
730 Y ¢
"
Art. &3

2 ANt
2. y=rcge b oege 4 ;T(j (ll’mﬁvx — Teosz)

% _ 10. @) & igin2x — cos 2z
3. ?;-ccos(v3?+“)"l:‘§1 1122 12":+11 +17( )

\\ . Art. 64,
2. '-qlc‘os'(zx+ a)+ twsing —§onex.
N g/
s. y\_‘,ﬁlfﬂ 4 oo + msinx + L cosa{l —22), ' "
Y-
.\%’ g Page 80. .
AN Ly (erer 4 epe) c0si 4 (0pe® + 0gf ) BN
\:"\;“ 2. i = re—e 008 (% + &)+ 2697 cos (2 + B) + tut ™t
- @ 3 o2
/ 3. 1 -c1+e-»(c2+rsx)+--———i+4z+ﬁ-

w=ecos2x+ casinBuw 4+ (e — sindz)+ §(27F — D

g

B, y = ol 4 epete 4y (6x+5)+w

L X
= 2¢

T = et L paete b oane® L 1(?3+1

B. ¥ =™ + tmem™ +
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3 - —
~% oV e R
8 y=¢t+earte ?(cs Hnl-i)‘—:r + oy cnsTﬁ:) FAhr? - Lan?

. + h(a — 3Dyt + L bt
8. y = cie* + cue™ (;{"‘41 + oy (2 15

10. ¥ _csm (nx + a)(aa:-f— i+ - CGOR Rer

: A L
(i )t 2\
v\\
gin Oal — ot L)
11. w ={a -+ bx)sin x + (¢ + dic)cos -;—x 9 ® FIé—Lcos A
7%
A
) 3
sin x| osmelog cos ur y
12, y = ezcos (ap + o)+ ZELD2 4 SORIEDRCOBUR, D
« /

13. y—_~(a+c-21;)e*+ﬁ(2x3-— 12+ 3).

_96@band) 384 1
GNP G 1
: A 242t da g1
e e e VT
15. y = €1e% 4 €09 + gy 8in (az + a] 4 a.w — ud a3,
16, == ex + €2 + e5{es + cax) + 27 R %x“
7. y = cle* + e oF ey sin (x -}sﬂ}'— 167 C0% X,

18. y=¢ (cl cos%x + €y siﬁ'%§x> — {2 cos 2‘;1: -+ 3sin 2&).
\

12 12
20. y = cewsin (3,43\:.: Y oa)+ ercos,
21. y= e‘-f(c;\'ij—"cgn- + rgx®) 4 Fafe—.
22 y = 8"((23;-}- ea) + e (g L eat) F Lot (5 - 2+ )
23y ws%(m + egie -+ eaie® + {8 F gt
24, 'gb’:”élex + ey —i{wsing + cos i) + Hyret(2u? — S + 9).

17
19. y=ee 2+ me‘-ﬂ q\_ 93331 & (:c )
\

SBS y = 01éd | eoe® — F{2 8in 32+ cosdx) — ig(sin 2 + cos2x).
NS )
4 3
\; "'26. y = &%(c1 4 02 €08 4 €3 Sl x) + e 4+ {cos e 4- Hsin ).
g 27, ¥ = 16" 4 1‘263'.43 + x4 29'5‘
98, g = (0 + e22) + ege* + Lete,

v Vi )
x

290, y=eciet+ ¢ (r:acos —x+c3=;m 3

(-'.I!I

+~—(331nx—11305:c)--1 (‘,11 ;—\){——}—\/ﬁcos-—-j—

ol
ko
it
——
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CHAPTER VIL

Wer. 65 - ey

2 y= cxd cos(-‘/?}} loge + a) -f— al

! . A\
~ (\)
T Art. 66 o
« \J/
3. y={¢, + ezlogxisin logx + (cg + célor':c)cosla 400, *
' \ ’
rt. 69, ¢
X, . 1y
2. y:;I:_B(:'.‘-]_—]—Gle"ﬁ,‘r)-i-x—i- 3. y—Fch—"-l-‘qa{t“ ( I)
e 38
" www.dbra I1¢>rary.01 g.in
Art. TLAS
Loy=(5+2u)y [cl(a+2x)"ﬂ§d-,&(o+2x) -ve).
N vE ~¥3 .

2 y= (2x—1)[c1—1-62@x" D ides@z—1) 2 1.

. "ﬁ‘age 91.

5. v A v . ,
Loy=oart+ TE(C%K} o € ) m % y=cpl fopt LT

8 r=ulo+ cs ls}.c + cs(logm)9]

8 = eiudef + o+ ap + 2EE2E

3oy = '\’(‘{1 + eglogz) 4 e

6. ,& 9‘(:‘1 008 lowx + 6g sm logx + Ay +x e+ 2 logx).

N R
W= [+ eslog(s+ 1] VaT 1+ R AREGEL LS

N o
B ¥ =ocib eax” +———]

g 3!_: :;r;'-?(('-l 4 g logx)+ m' ) |
10. y = C.F. of Ex. 3, Art, 66, +(logz)® + 2loge — 3.
1L ¥ = x{c + ogloge)+ e 1+ Fo7 loga
12. » -_—!(log £ _teloga+ Cﬁ).

AN 1
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13. ¥ = x™(c1 9in lgg 2" 4 £u COB,
14, =2 (en¥T £ oo + B eoslogx)

gx+ 101 coslog &).

/ Y .
8 y=omx6 2-'l j‘cw"?ez?dw + €z i‘f N
dr ey = ‘jezfxsdx + Lljeﬂfdx + r2, mj\’\’

5. 3%’}2:— %m%+rje“%@+(n WO
v b PN

CﬁJFaQu%-LbJZQ ar 2L >
6. dy = Vi + c-dy g-in 108 ot =cp !

A

- Art. 76 -
2, Y=o+ cx+ e+ +‘#‘ .-"‘—' +-

m semtt

8. y=op 4 ear 4 oenat —.—.cyz:’-"-{ 327 log .
4. j-cl—’,—czx-}-(b“ xﬁ)smx—‘ixcuza,c

,\ Art, 77.

2 33""2&\(&* 2 (st + e + e
= ?—7_"10 @ (Vg + V1 + o) = ue V2L + o

3

’§» Art. 78
z~‘2 (y . h)__.‘.,; . pmlE—al, 3,y =+ (Ul2 4+ 1) h’)g’ {x — f_‘.-;)‘f' Co
\: . 4 loefy =4 (o + a“)r’-} o Cx® + Ca-
Art. 79.
L e~ = i + £g 3 logy=cier + cee
2 =+ arnt o L& sin (ny — 2V2g)= e
ATt 80,

1. y =0y 8inax + o2 008 gx + o3k + Co
2y =t e gy b ean 6T 4

ags

ai(a? — m¥)
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o, Yizie Y :
3 y=o 4 oot ac’f(cax 2 o4ox f ) when @<},

L a1 T
¥ =61+ ex + oget coa(-‘-/‘i—‘—;-—l.luga) when a > 1.

Art. 8l

P B A
2. %20126“+’ * 3 ea. "8 Y= logx 4+ ca (\A
5 :“\ ~
4 15y =80+ e)® + 2 + ¢s. R D
n\'“:‘
Art. 82. {w
a. y~—.‘~1(1_2,~2+)(2'1'2+4)x4 2(2.1:24+4)(2N D16 . )
1z il L\
+b’(m—-|— ’ T
5. 1:A;z:(1 .2
J ’-l 2 :] \ e 9
3 @ at P
+ B2l wh )
1( 3.3+z457*24a3?11
. 53 pd 5‘36 1.

"1.8°1.8-8.7 {J 5.8.7-11

& g

8. ?;-:;.l(l—u n\\i\? +#n-n- 2-n+l-n+3-§----)
e

-I—B(.’r:—.aa’—.l 42T —l—n-—l #—8-n+2.n4+4. 3-—---)t
& 3 @

_m\, nen—1, ., n.n-1l.n—2 “‘3;;-1._...)
™ 2&‘( 5an 17 V3. 4.3n-1.80-8

el ntl.n-r2 _g,n+1 nt2.ntd.n4d 2=k )
Q\I{( n_ 1+ 2.2043 TTalq. 2at+3. 2045

Page 107.-

y ) & d‘-”(.
1. ysdy.i.ﬁ(gg)za-zy:W" 4, :tac%%— ;{;ﬂd_i+x3y=mﬂ+c.

3 =

5. y=¢1 - cgk 1 rge® + 6487

2. zay+:c,2—-clx/a2—m“+cg
1+ afor™

3. (1+:c+x*)_;—a1xﬂ+ch+c3 6 oY = ope —
Y. ayval— 1=seclz + oVl — 1 +elog(x+ Vet — 13+ s

B. g == ¢ —sin-lo 9. y=osinls +(sin )" + G

e ———————



994 ANSIVERS.

" )

- . €T
10, y=e;sinte + eaCOBE — C2 siny log tau oy

11, y=cer{z - 1)+ ax + 6 jaff?‘ju:‘

1o-2(d5)? + ¢

12. ¥ = a:rlogw_-‘l—“.-clx + o 4. yeeaftomt ot _@_3_*_3:1‘21
1 216
13 logy—1=- ——
rE + 2 15, y = 16~ + 0a + Let .\
. . ¢\
16. y=¢ sinz ’ e"i”"(ﬂlx 4+ C;;)d% + e BhE AHLE — 1 :“}\
17, y=re {1 —2eote)+ cp oot 18. alog(y + b): .{‘-:M
19, (e + £a)? +a_¢1«;2 \V
U _ [ revde 4 o LAy
20. - = jf(x)dn, ST e A m{& £a,
Y e 3y 2 f
W W dbrauihbrarf(cﬁ'gfn f!’f%aj q ‘+ .
gl y-b== log ses @k — ¢)- {.}
N
“‘:\“
.\":v
CHMPTER IX.
'{ Art. 8T,
g{\gyﬂ Ax -+ B.fj e + L
3. y=de + Bxg(éfc‘i 4t 3150w —183). 4.y = oy f’1(l‘- 'L:E)
o€
;"“,"' Art. 88.
R TS Y 2 2 ot
3. gQ:g)}E‘m+ 026'3"{6’31 dx. 4 y= 167 & vad ji"ie .
O
:73; Arxt. 91,
2. y=ce '“o-]r sin (\/flog:r + a)

3. y = (¢ sin VB 4 excos VG x) sect.
. Art. 92,
2. y=csin (Zlogtan?-’ + a.).

4 y= mcosé -—+czsm —

4. y=e(er+ egT)

7
8, = ¢ sin (&% + u)+—4‘
. ] .

2 w2 ale?
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Page 120.
1 [ —nz ".—. —_—
1 ¥ :E({"c' +egem) 4 gVt i =elog (s VI F o)+ o
2 xy=esin(arda) By = e + o408 — 4202 4 1602 — 163),

&

3. y=crsin{arta) B y= et sin (.E\/5+a)
Ty e (et ¢ oegemvE),

:’. F 4 N &
| 8. y=e{rloga 4 ). O\
8 pmozda@shte s Vs jea -t O
10, y = i3 -+ 2 GoR 2. N\
1h. y = ope? 4 e 4 0 (mzfx-ﬂe-mx — -tjbil:'?e-x@%;"
12, y = cperdin ey pge—nsin T N Q:
. e _4:‘2 P
13 p=ax+ E’Hzi‘-'f.'-t:‘fe T YT}@ Ty (et
14, 2y = rloe? , WO bléﬂ raly org.in
. 2y = w(oets ooy — ) 17. y-~— e 8.
15, 3=y sin'(\'a—_.s (44_ “)_ - 13‘ y&—?—(x-—c)ﬂ-—}cz
¢ ‘19‘ y= 0B ook ey
18 y=¢ sm(n\/:!:‘—-l-}a) "
“CHAPTER X. v
N\ Page 124. S
1. The circle Of.mdiu_s 3. =y

wte’ .z-i_g‘_
2 A c*i.t.en\*aﬂl“y,y__-(e ¢ e ¢ )
J‘Q—E’zz — @)% = ¢, cireles whose cenires are on the z-axis,

4.\ }‘& —a)l=doly—¢)a sy‘;tem of parabolas whose axes are pa,ralle]
:~\’.’> to the axis of .
N zte= cvers*lf /2 ey = y¥, the cycloid obtained by relling any

circle along the z-axis from any point.

§. The ellipses a%? - x%x — 6)? = a4, If the cube of the narmal ia
— % times the radins of curvature, .
The hyperbolas 2y — ai(z — €)% = A&, il Lhe oube of the norma!
i3 4 &2 times the radius of curvature. R
A setof pa.ra.holas it rio constant ia mtroduced at tha ﬁmt. integration,
Ed

r
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1. Thc- elastic curve represented by the equation
42— — e dy = £ (@ — .
8, == i8¢ + egext, when accel = «? distance from the fixed point.
s = ¢y sin (at + ex), when aceel = — «? distance from the fixed point.
9. 5= & at? 4 upl + 3
10. The rclation between time of wotion and the distance passed u»&k

f=e1 4+ -m—{\/s-—_t's- +elog(Vs+vs—oh according \3} the

&N
K2 &
acceluatmn iz £ 3
52 £

14 "s\
11, s= .5';- log cosh ne, if the resistance of the air is K times the square of
7 .

the velocity. p \'
2. 5= wzwdbrauliby a;r%y OF%cceleramon 1§\- « times the cube of the
veloc!t}um ? { :: v
13. T'=2 :r\flﬂﬁf. {Fmtage, M({i{{éﬁi}aﬂiml Theory of Flectrivity and
Magmetisi, . 85.) “;{" \ N N
.14. s— 1+ (85 — Dens ki, q{: :;(so — D sin «f, where & :\,"f.
T i Puls— i g’iit}il to a mew variable,

N/

2
16. 2., i accelgm%n is — L.
L4 o

17, im el 5e Tjehff(z)az—e . p?,y(s)dc}
N, ot
\J_L _

.{che T4 ege Ty,

-.:"3 where Th =
."\ .

2LC 2LC

v and [ JE—— '_—v.
K RO-VECZULO RO+ VEICT—4 L0
} 18 Same as in 17 with (£) substituted for {2} and ¢ for &

_
19. i =e E{ey + eot). 20, = Tsin

L
2l, #— a = e Bin Vwr—ri ) for wi >kt ;

¢ — o= cle“(x—"’l’—‘n’l‘ + cge—(r«+‘/ac_=-:;?! foor w? < k2.

22. 6 Ely = P(38x — 2%). 98, MRy = w(d Pz —at)
F
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24, I'he gencral solution is

A eosh —Q— B sinh we? | wEL
y= Acoshy X o+ Bsm \'Er 3¢
r' On applying the conditions of Ex. 22 to determine the constants, ‘
' A=_TWEL p_y, 2\
@’ A
: _WEILf, 0 wa? N
and therefore, H= —-QT(J cosh x) 2 Q o\
W
. : N
I s CHAPTER XI. D
' "
Art. 98. SN -

o2 w=e*(Acost+ Bsint), y= e“‘[(A B) coQ’d(A + B) sin i].

3. ®= e 4 ol 4 ¥ — EE— Ewuyvedehu‘ax@ibmy giefing £ — 1%

4 w=cpetfege LR AR, y= ~t;;e*f-}-4r.ze*ﬁf——g t+57 56

5 5= (ert+eet)eé + (es-bot)e™, 2y—»(~e@ c1—L-.-tje‘ (eg-t 0z ogt)e .
;lﬁt.féQ

8. 2= 2% 4oy, 23 =18 + oo Ve g ]()g +on Y —m =Ly
. K ¥ — i

5 3 -—g{%ﬁcﬁ, 23 +—z~ — &g,

6. @R+ byt cot =0y, gF+ BT L P =

o \/

."\/ Art. 103, J
8. (J—l—zﬁk—r : 4 x—ey—ylogz=0.
8. O’QQ} | 22 n)y= e 8 yle+H=cly+2)
AL A
Page 143 )

"2 % =(cp Bint 4+ £q cosf)e ¥ +—-—~—-ﬁ, _
2¢ 6
y:[(c‘:!—cl)Sint-(M-I*cd)0035}3_“—'T3’+—,_ _
e — %-

3. w=(e; L cyr)e® +3 (536-%= —}a, 2= 2(3eg — 61 — ch)e’
4y ooyt — AL 4 FE— 3
?J’:—%c]e‘ﬂ‘—l-n23—7‘+gﬁg-—%t+ﬁe‘
1)
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5, 22:';'*%1 x+y:be‘. 8. xy—}-yz-{—zx:c.(a:-ky.;.z)‘
9, logayzt+ 2+ 4y +z2=r¢c
6. 2?4 yttf=e, iy —d=og Y
. —_ shw_ 10, (g4 2)(u+ o)+ a(e —uy=0.
x y 11, m‘szyﬁu—n—ﬁ—:ﬁ-‘z:c.
12, 224 (0 — a)i+(y— W)=
0~ d
(% =cicosvat+ conin vis 4+ 03005\/:5—1—04&:111‘\/2! ¢\
13 — iz ¥+ e — fy —Feosdt .4 O
"y =—2c1co8 VBt —eesin VB — Zeyeos V2 — 24:_,5-,111:\*’5.5
L LR 7 i 2 N "g’.“
o w R\
14, :.::e*’z(ci cos L 4, smi”-) +e "'"(r‘s cos 2 +t' sin ﬂ)
v ) qg V2
PN
dbraglibrary.o . )
y—e Trlsm——m I"%T-{«e (\ty: N CsSinL“)‘
2 Vi

J & = ¢ 8in kd + dp COB KB+ g, ,".&
15. 1 y = bysinkt + by cos &t + bs,. ’t”‘
la=0 §in k" 4 oy cos &t +“'3z
where x2 =12 + m? o4 ﬂ,ﬂ % and the arbitvary constants are con-
nected by the\f&l}.owmg relations :
Bty ,ub} il — Ic1 hy — ey =7,

\ By Cy

‘.‘ lgy + mhy + 5y =0, ? by

O m R
16. See Fo;{’«,-};h\, ‘Dif. Eq., Fx. 3, Art. 174; Jotmson, 7f. Fy., Art. 242.
17, & hmly—- eyelatmente L gpa—(amatte,

oy = ogelmtme’ B pgp (otmn }’“
where m; and my are the roots of a'm- (a—bm—b=0
g\‘Ex 186, p. 269, Johnson, Diff. Eq. ; Ex. 4, p. 270, Forsyth, Dif. B,

\ /8. When the horizontal and vertical lines threugh the sturting point

~ in the plane of motion are taken for the x and ¥ axes, the equation
af t.he. path is .

@ =t e0S ¢, ¥ = votsing — Ig?;

and the elimination of ¢ zives the parabola y=xztan¢— g

S
. i
0% 005'3 93
19. Axes being chosen as in Ex, 18,

2 =Pcosp(l— evet), y=—7 ¢ LIRS HL (g e,
& o o2
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20. Fur upper sige: the hy pubula. {1y — bl.c)(bxx o) = { @y he— a2hy)3
For lower sign: the ellipse (o —b12)? + (qay — bt} 2= (aaba — ool 3t

| CHAPTER XTI

Art, 108. :
Bz pa e - Py 3 p=q. 4 g=2yt 5 z ::\' \
- 6. x(‘jz)i—zﬁxo, or yz—-}-y(a ) za—-zq()‘;..}
: e e oy AN
5 . ':x\. ¢
? Art. 109. \\o
% oy =1 8 T+ apy+ z(!g\’\}»p) {m -+ ng)c
. WYL 8z _g 5. i i
1 dx + yay =2 www.dbra@ib a]‘@:ﬂ%l 8 in
Art. 116{ )"
¥ A iy
s Bz =espla — ), 3\"«2.r+111y+m=¢(x‘-’+y2+z-)-
- 6
e 11 f_._...) N - B B e =0
oy (- ,;‘:v :
! \ Art. 117. .
- LA
! \\\2 xu—Su—qﬁa(i} E)
O, O Art. 119.
: ). § \ . ' 3 .
3. = g*‘,,__.,_“ )+C 4. z:mx*}'yeﬁ.'i-C:
; O 4 vid
' % 5. /Hax+ky+b-
R\ |
> Azt. 120.
;g 2. z—ax+ by~ 2\2_{55.
E Art. 121 1
Miar e s g 7
C8 M g 3 (z+ae)s=(m+ay+c). !
4 dez—a)=(z+ oy L B L4

. 2t[evVd—4ab— 4{15‘10"(;;—1-\/ -—4a“)] Az tay+ by



230 ANSWERS.

i L,

Art. 122,

8 a3 ={x -+ a,)i + (¥ + a)i + A, 4, z= (2% cg)” oy ol b

38 2 —axrtaty b, 5 (r+<r) 4+ iy — u} 4 b
6 2=Vt E+yvE—a + &2103{9.—} Vit a-_[._ b
¥ =l
L\
Art. 123, A
2 z=(x+a)y+b), S8.Lisz=0 A
Another forni of the C.Lis 2vz =+ ay + b. 75 3
i3 4 (/
8 CLisa%=g% +(ax+ M4 . \\
\i\"
Ast. 125, Q\
Y
3. azﬁf_&?‘,m{mmﬁfcgﬂorg.in 4 == ;Q(yax" + 7 (-
LAt 1%5 “'
RS
2w =F(&)+ o). W 2= x_r‘(y-) + F(?-)-
& P €
A
~ Art. 128
B 2= 9(y— 25+ Yy~ m) 3. 2=y +Ba)+ by — 22
¢, L\
N Art. 129.
18 x%ﬁ(J + @)+ mea(y + )+ galy + 2.
A \./
:o “‘J
\{:}{,& ) Art, 130. .
/ ol W1,
‘:‘Q\ 12 LT faot
\> Art. 131.
/4 2= S(x 4 1)+ gy —x). 5. z=erp(y) + e (x4 1)

6 z=edp(y — )+ e TPy + ).

Are. 132.
_(JeEJ_Dy+ L.68+1'f23f+ Jx‘2+ Iy"!‘zwx)' sIn(ﬂ:—F—?!})—x‘*”
—lev g ety faf 4 Yoy + fe 4ty AL
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L, Art 13
. o
2. (¥4 :W(x?-y)-k%g—

3 2= o(a + P9 F Y@ — 1P, (PULE for b, § for 42)

N

Page 187. : <\
z‘.i\\ n.
L z=:c"¢>(g)- L (z-—y)x/a:+y+z—¢(—-\:§ig).
2, a4 3ﬁ+z2:z¢(g)- 8. alogz._au:-r(l wa\c)y-i—b
\
RPN SRy U SR (5‘3‘*\)
38 (g —1}+ . ..x,(p(x,x) 7. _ﬁysap y?—kx‘?-
4. y__—b=¢(£:_@). 8. ¢+\/3721f\?+z3—:c1'“¢( )
¢ F—C W W dbratl{]bl ary.org.in z
0. p(Z=L, Z=Di=p, 10§37+ = p(ape).
-2 y—=z
11, feos(z +¥)+ 51n(m+y)}e”""‘¢‘ ta.n(31r $—;y)}
12, +1 _i_azﬁ_loglil]_i'&"_ o+ ay -+ b
13, 72 =ay 4 2\/@@—&“& 15. z=a:::+~—-i_a.—_-—y+ﬂr
2 __
14. (z—b—alu}y_éfafy e

18. = aau‘rbyqtc\/—ﬁﬁbf SLisal4 pi 4 2=
11. ~-a{;{-‘(1—-v’a)2y+b 18. z = qxev - La%¥ 4+ b
\‘ 19, az — 1= oetty,
20\ ) 2z—( +ay) +b; () d..a'y+4\/$2-a1“+b1,

i"\\, 6 z =gy + evi?+ e 4 b
RS talog(2? + 9+ Vi@ t&u—Ty + 5. (Change to polar co-ordi-
) na,tes bl
21 j_g_ogmtl gnid
22, 1-%_
Sy il A

98, ze=aviTitVIi—@EVESy+b. (Put V=1 Ve—y=vl
AU 7= ary+ae+y)Fh Pz =o @hy=w)
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25 v/l+q.z:2\/:c+ay+b. 27, = =wy + F{x) 4+ 4y,

26. z ="yt 4 o(¥)logx 4 ¥ (¥). 28y =uwp(e) (2]
29 z =gz} vl ¥+ <
30. (v — Lyzy +ax=elc Dap(y)+ f(y). S
31 2z :j'e—fftrw[efmld-rf'(y)fzx 1 ¢(y)}?.u - ,w(y)c"\{'t.
32. 2 =lyxllogs + e (1) + ¥ (1) ,«%
8.z =jely — oy + S+ e (), D
3. 4z =% 4 #(0)+ (). \

WWW dbrauh

35.

R :I—|—bx4_+

24

36, ¥ r-:mg(fr“c-} hy—[—r‘zj_

ar.

Tary.or

Br=ax(y*—1 (;-,:~ +2

38, 4z= 5y ¢j¢(§z‘}+¢(y)
Q\,

z y + Fly -~ bf)\\/r\(J — aqx)

W%%F-rﬂ)

(V1 — 24 ().
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